66 resultados para GROWTH RESTRICTION
Resumo:
Fibroblast growth factor (FGF) signaling is critical for a broad range of developmental processes. In 2003, Fibroblast growth factor receptor 1 (FGFR1) was discovered as a novel locus causing both forms of isolate GnRH Deficiency, Kallmann syndrome [KS with anosmia] and normosmic idiopathic hypogonadotropic hypogonadism [nIHH] eventually accounting for approximately 10% of gonadotropin-releasing hormone (GnRH) deficiency cases. Such cases are characterized by a broad spectrum of reproductive phenotypes from severe congenital forms of GnRH deficiency to reversal of HH. Additionally, the variable expressivity of both reproductive and non-reproductive phenotypes among patients and family members harboring the identical FGFR1 mutations has pointed to a more complex, oligogenic model for GnRH deficiency. Further, reversal of HH in patients carrying FGFR1 mutations suggests potential gene-environment interactions in human GnRH deficiency disorders.
Resumo:
In patients with myelodysplastic syndrome (MDS) precursor cell cultures (colony-forming unit cells, CFU-C) can provide an insight into the growth potential of malignant myeloid cells. In a retrospective single-center study of 73 untreated MDS patients we assessed whether CFU-C growth patterns were of prognostic value in addition to established criteria. Abnormalities were classified as qualitative (i.e. leukemic cluster growth) or quantitative (i.e. strongly reduced/absent growth). Thirty-nine patients (53%) showed leukemic growth, 26 patients (36%) had strongly reduced/absent colony growth, and 12 patients showed both. In a univariate analysis the presence of leukemic growth was associated with strongly reduced survival (at 10 years 4 vs. 34%, p = 0.004), and a high incidence of transformation to AML (76 vs. 32%, p = 0.01). Multivariate analysis identified leukemic growth as a strong and independent predictor of early death (relative risk 2.12, p = 0.03) and transformation to AML (relative risk 2.63, p = 0.04). Quantitative abnormalities had no significant impact on the disease course. CFU- C assays have significant predictive value in addition to established prognostic factors in MDS. Leukemic growth identifies a subpopulation of MDS patients with poor prognosis.
Resumo:
It is well known that the renin-angiotensin system contributes to left ventricular hypertrophy and fibrosis, a major determinant of myocardial stiffness. TGF-β1 and renin-angiotensin system signaling alters the fibroblast phenotype by promoting its differentiation into morphologically distinct pathological myofibroblasts, which potentiates collagen synthesis and fibrosis and causes enhanced extracellular matrix deposition. However, the atrial natriuretic peptide, which is induced during left ventricular hypertrophy, plays an anti-fibrogenic and anti-hypertrophic role by blocking, among others, the TGF-β-induced nuclear localization of Smads. It is not clear how the hypertrophic and fibrotic responses are transcriptionally regulated. CLP-1, the mouse homolog of human hexamethylene bis-acetamide inducible-1 (HEXIM-1), regulates the pTEFb activity via direct association with pTEFb causing inhibition of the Cdk9-mediated serine 2 phosphorylation in the carboxyl-terminal domain of RNA polymerase II. It was recently reported that the serine kinase activity of Cdk9 not only targets RNA polymerase II but also the conserved serine residues of the polylinker region in Smad3, suggesting that CLP-1-mediated changes in pTEFb activity may trigger Cdk9-dependent Smad3 signaling that can modulate collagen expression and fibrosis. In this study, we evaluated the role of CLP-1 in vivo in induction of left ventricular hypertrophy in angiotensinogen-overexpressing transgenic mice harboring CLP-1 heterozygosity. We observed that introduction of CLP-1 haplodeficiency in the transgenic α-myosin heavy chain-angiotensinogen mice causes prominent changes in hypertrophic and fibrotic responses accompanied by augmentation of Smad3/Stat3 signaling. Together, our findings underscore the critical role of CLP-1 in remodeling of the genetic response during hypertrophy and fibrosis.
Resumo:
Peptide signaling presumably occupies a central role in plant development, yet only few concrete examples of receptor-ligand pairs that act in the context of specific differentiation processes have been described. Here we report that second-site null mutations in the Arabidopsis leucine-rich repeat receptor-like kinase gene barely any meristem 3 (BAM3) perfectly suppress the postembryonic root meristem growth defect and the associated perturbed protophloem development of the brevis radix (brx) mutant. The roots of bam3 mutants specifically resist growth inhibition by the CLAVATA3/ENDOSPERM SURROUNDING REGION 45 (CLE45) peptide ligand. WT plants transformed with a construct for ectopic overexpression of CLE45 could not be recovered, with the exception of a single severely dwarfed and sterile plant that eventually died. By contrast, we obtained numerous transgenic bam3 mutants transformed with the same construct. These transgenic plants displayed a WT phenotype, however, supporting the notion that CLE45 is the likely BAM3 ligand. The results correlate with the observation that external CLE45 application represses protophloem differentiation in WT, but not in bam3 mutants. BAM3, BRX, and CLE45 are expressed in a similar spatiotemporal trend along the developing protophloem, up to the end of the transition zone. Induction of BAM3 expression upon CLE45 application, ectopic overexpression of BAM3 in brx root meristems, and laser ablation experiments suggest that intertwined regulatory activity of BRX, BAM3, and CLE45 could be involved in the proper transition of protophloem cells from proliferation to differentiation, thereby impinging on postembryonic growth capacity of the root meristem.
Resumo:
Analysis of TRIM5α and APOBEC3G genes suggests that these two restriction factors underwent strong positive selection throughout primate evolution. This pressure was possibly imposed by ancient exogenous retroviruses, of which endogenous retroviruses are remnants. Our study aims to assess in vitro the activity of these factors against ancient retroviruses by reconstructing their ancestral gag sequences, as well as the ancestral TRIM5α and APOBEC3G for primates. Based on evolutionary genomics approach, we reconstructed ancestors of the two largest families of human endogenous retroviruses (HERV), namely HERV-K and HERV-H, as well as primate ancestral TRIM5α and APOBEC3G variants. The oldest TRIM5α sequence was the catarhinne TRIM5α, common ancestor of Old World monkeys and hominoids, dated from 25 million years ago (mya). From the oldest, to the youngest, ancestral TRIM5α variants showed less restriction of HIV-1 in vitro [1]. Likewise three ancestral APOBEC3Gs sequences common to hominoids (18 mya), Old World monkeys, and catarhinnes (25 mya) were reconstructed. All ancestral APOBEC3G variants inhibited efficiently HIV-1Δvif in vitro, compared to modern APOBEC3Gs. The ability of Vif proteins (HIV-1, HIV-2, SIVmac and SIVagm) to counteract their activity tallied with the residue 128 on ancestral APOBEC3Gs. Moreover we are attempting to reconstruct older ancestral sequences of both restriction factors by using prosimian orthologue sequences. An infectious onemillion- years-old HERV-KCON previously reconstituted was shown to be resistant to modern TRIM5α and APOBEC3G [2]. Our ancestral TRIM5α and APOBEC3G variants were inactive against HERV-KCON. Besides we reconstructed chimeric HERV-K bearing ancestral capsids (up to 7 mya) that resulted in infectious viruses resistant to modern and ancestral TRIM5α. Likewise HERV-K viruses bearing ancestral nucleocapsids will be tested for ancestral and modern APOBEC3G restriction. In silico reconstruction and structural modeling of ancestral HERV-H capsids resulted in structures homologous to that of the gammaretrovirus MLV. Thus we are attempting to construct chimeric MLV virus bearing HERV-H ancestral capsids. These chimeric ancestral HERVs will be tested for infectivity and restriction by ancestral TRIM5α. Similarly chimeric MLV viruses bearing ancestral HERV-H nucleocapsids will be reconstructed and tested for APOBEC3G restriction.