166 resultados para Evolutionary Polynomial Regression (EPR) for HydroSystems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a boy, referred at 25 months following a dramatic isolated language regression antedating autistic-like symptomatology. His sleep electroencephalogram (EEG) showed persistent focal epileptiform activity over the left parietal and vertex areas never associated with clinical seizures. He was started on adrenocorticotropic hormone (ACTH) with a significant improvement in language, behavior, and in EEG discharges in rapid eye movement (REM) sleep. Later course was characterized by fluctuations/regressions in language and behavior abilities, in phase with recrudescence of EEG abnormalities prompting additional ACTH courses that led to remarkable decrease in EEG abnormalities, improvement in language, and to a lesser degree, in autistic behavior. The timely documentation of regression episodes suggesting an "atypical" autistic regression, striking therapy-induced improvement, fluctuation of symptomatology over time could be ascribed to recurrent and persisting EEG abnormalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The object of game theory lies in the analysis of situations where different social actors have conflicting requirements and where their individual decisions will all influence the global outcome. In this framework, several games have been invented to capture the essence of various dilemmas encountered in many common important socio-economic situations. Even though these games often succeed in helping us understand human or animal behavior in interactive settings, some experiments have shown that people tend to cooperate with each other in situations for which classical game theory strongly recommends them to do the exact opposite. Several mechanisms have been invoked to try to explain the emergence of this unexpected cooperative attitude. Among them, repeated interaction, reputation, and belonging to a recognizable group have often been mentioned. However, the work of Nowak and May (1992) showed that the simple fact of arranging the players according to a spatial structure and only allowing them to interact with their immediate neighbors is sufficient to sustain a certain amount of cooperation even when the game is played anonymously and without repetition. Nowak and May's study and much of the following work was based on regular structures such as two-dimensional grids. Axelrod et al. (2002) showed that by randomizing the choice of neighbors, i.e. by actually giving up a strictly local geographical structure, cooperation can still emerge, provided that the interaction patterns remain stable in time. This is a first step towards a social network structure. However, following pioneering work by sociologists in the sixties such as that of Milgram (1967), in the last few years it has become apparent that many social and biological interaction networks, and even some technological networks, have particular, and partly unexpected, properties that set them apart from regular or random graphs. Among other things, they usually display broad degree distributions, and show small-world topological structure. Roughly speaking, a small-world graph is a network where any individual is relatively close, in terms of social ties, to any other individual, a property also found in random graphs but not in regular lattices. However, in contrast with random graphs, small-world networks also have a certain amount of local structure, as measured, for instance, by a quantity called the clustering coefficient. In the same vein, many real conflicting situations in economy and sociology are not well described neither by a fixed geographical position of the individuals in a regular lattice, nor by a random graph. Furthermore, it is a known fact that network structure can highly influence dynamical phenomena such as the way diseases spread across a population and ideas or information get transmitted. Therefore, in the last decade, research attention has naturally shifted from random and regular graphs towards better models of social interaction structures. The primary goal of this work is to discover whether or not the underlying graph structure of real social networks could give explanations as to why one finds higher levels of cooperation in populations of human beings or animals than what is prescribed by classical game theory. To meet this objective, I start by thoroughly studying a real scientific coauthorship network and showing how it differs from biological or technological networks using divers statistical measurements. Furthermore, I extract and describe its community structure taking into account the intensity of a collaboration. Finally, I investigate the temporal evolution of the network, from its inception to its state at the time of the study in 2006, suggesting also an effective view of it as opposed to a historical one. Thereafter, I combine evolutionary game theory with several network models along with the studied coauthorship network in order to highlight which specific network properties foster cooperation and shed some light on the various mechanisms responsible for the maintenance of this same cooperation. I point out the fact that, to resist defection, cooperators take advantage, whenever possible, of the degree-heterogeneity of social networks and their underlying community structure. Finally, I show that cooperation level and stability depend not only on the game played, but also on the evolutionary dynamic rules used and the individual payoff calculations. Synopsis Le but de la théorie des jeux réside dans l'analyse de situations dans lesquelles différents acteurs sociaux, avec des objectifs souvent conflictuels, doivent individuellement prendre des décisions qui influenceront toutes le résultat global. Dans ce cadre, plusieurs jeux ont été inventés afin de saisir l'essence de divers dilemmes rencontrés dans d'importantes situations socio-économiques. Bien que ces jeux nous permettent souvent de comprendre le comportement d'êtres humains ou d'animaux en interactions, des expériences ont montré que les individus ont parfois tendance à coopérer dans des situations pour lesquelles la théorie classique des jeux prescrit de faire le contraire. Plusieurs mécanismes ont été invoqués pour tenter d'expliquer l'émergence de ce comportement coopératif inattendu. Parmi ceux-ci, la répétition des interactions, la réputation ou encore l'appartenance à des groupes reconnaissables ont souvent été mentionnés. Toutefois, les travaux de Nowak et May (1992) ont montré que le simple fait de disposer les joueurs selon une structure spatiale en leur permettant d'interagir uniquement avec leurs voisins directs est suffisant pour maintenir un certain niveau de coopération même si le jeu est joué de manière anonyme et sans répétitions. L'étude de Nowak et May, ainsi qu'un nombre substantiel de travaux qui ont suivi, étaient basés sur des structures régulières telles que des grilles à deux dimensions. Axelrod et al. (2002) ont montré qu'en randomisant le choix des voisins, i.e. en abandonnant une localisation géographique stricte, la coopération peut malgré tout émerger, pour autant que les schémas d'interactions restent stables au cours du temps. Ceci est un premier pas en direction d'une structure de réseau social. Toutefois, suite aux travaux précurseurs de sociologues des années soixante, tels que ceux de Milgram (1967), il est devenu clair ces dernières années qu'une grande partie des réseaux d'interactions sociaux et biologiques, et même quelques réseaux technologiques, possèdent des propriétés particulières, et partiellement inattendues, qui les distinguent de graphes réguliers ou aléatoires. Entre autres, ils affichent en général une distribution du degré relativement large ainsi qu'une structure de "petit-monde". Grossièrement parlant, un graphe "petit-monde" est un réseau où tout individu se trouve relativement près de tout autre individu en termes de distance sociale, une propriété également présente dans les graphes aléatoires mais absente des grilles régulières. Par contre, les réseaux "petit-monde" ont, contrairement aux graphes aléatoires, une certaine structure de localité, mesurée par exemple par une quantité appelée le "coefficient de clustering". Dans le même esprit, plusieurs situations réelles de conflit en économie et sociologie ne sont pas bien décrites ni par des positions géographiquement fixes des individus en grilles régulières, ni par des graphes aléatoires. De plus, il est bien connu que la structure même d'un réseau peut passablement influencer des phénomènes dynamiques tels que la manière qu'a une maladie de se répandre à travers une population, ou encore la façon dont des idées ou une information s'y propagent. Ainsi, durant cette dernière décennie, l'attention de la recherche s'est tout naturellement déplacée des graphes aléatoires et réguliers vers de meilleurs modèles de structure d'interactions sociales. L'objectif principal de ce travail est de découvrir si la structure sous-jacente de graphe de vrais réseaux sociaux peut fournir des explications quant aux raisons pour lesquelles on trouve, chez certains groupes d'êtres humains ou d'animaux, des niveaux de coopération supérieurs à ce qui est prescrit par la théorie classique des jeux. Dans l'optique d'atteindre ce but, je commence par étudier un véritable réseau de collaborations scientifiques et, en utilisant diverses mesures statistiques, je mets en évidence la manière dont il diffère de réseaux biologiques ou technologiques. De plus, j'extrais et je décris sa structure de communautés en tenant compte de l'intensité d'une collaboration. Finalement, j'examine l'évolution temporelle du réseau depuis son origine jusqu'à son état en 2006, date à laquelle l'étude a été effectuée, en suggérant également une vue effective du réseau par opposition à une vue historique. Par la suite, je combine la théorie évolutionnaire des jeux avec des réseaux comprenant plusieurs modèles et le réseau de collaboration susmentionné, afin de déterminer les propriétés structurelles utiles à la promotion de la coopération et les mécanismes responsables du maintien de celle-ci. Je mets en évidence le fait que, pour ne pas succomber à la défection, les coopérateurs exploitent dans la mesure du possible l'hétérogénéité des réseaux sociaux en termes de degré ainsi que la structure de communautés sous-jacente de ces mêmes réseaux. Finalement, je montre que le niveau de coopération et sa stabilité dépendent non seulement du jeu joué, mais aussi des règles de la dynamique évolutionnaire utilisées et du calcul du bénéfice d'un individu.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trait decoupling, wherein evolutionary release of constraints permits specialization of formerly integrated structures, represents a major conceptual framework for interpreting patterns of organismal diversity. However, few empirical tests of this hypothesis exist. A central prediction, that the tempo of morphological evolution and ecological diversification should increase following decoupling events, remains inadequately tested. In damselfishes (Pomacentridae), a ceratomandibular ligament links the hyoid bar and lower jaws, coupling two main morphofunctional units directly involved in both feeding and sound production. Here, we test the decoupling hypothesis by examining the evolutionary consequences of the loss of the ceratomandibular ligament in multiple damselfish lineages. As predicted, we find that rates of morphological evolution of trophic structures increased following the loss of the ligament. However, this increase in evolutionary rate is not associated with an increase in trophic breadth, but rather with morphofunctional specialization for the capture of zooplanktonic prey. Lineages lacking the ceratomandibular ligament also shows different acoustic signals (i.e. higher variation of pulse periods) from others, resulting in an increase of the acoustic diversity across the family. Our results support the idea that trait decoupling can increase morphological and behavioural diversity through increased specialization rather than the generation of novel ecotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To present the long-term outcome (LTO) of 10 adolescents and young adults with documented cognitive and behavioral regression as children due to non-lesional focal, mainly frontal epilepsy with continuous spike-waves during slow wave sleep (CSWS). Method: Past medical and EEG data of all patients were reviewed and neuropsychological tests exploring main cognitive functions were administered. Result: After a mean duration of follow-up of 15.6 years (range 8-23 years), none of the 10 patients had recovered fully, but four regained borderline to normal intelligence and were almost independent. Patients with prolonged global intellectual regression had the worst outcome, whereas those with more specific and short-lived deficits recovered best. The marked behavioral disorders that were so disturbing during the active period (AP) resolved in all but one patient. Executive functions were neither severely nor homogenously affected. Three patients with a frontal syndrome during the AP disclosed only mild residual executive and social cognition deficits. The main cognitive gains occurred shortly after the AP, but qualitative improvements continued to occur. LTO correlated best with duration of CSWS. Conclusion: Our findings emphasize that cognitive recovery after cessation of CSWS depends on the severity and duration of the initial regression. None of our patients had major executive and social cognition deficits with preserved intelligence as reported in adults with destructive lesions of the frontal lobes during childhood. Early recognition of epilepsy with CSWS and rapid introduction of effective therapy are crucial for a best possible outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Genes involved in arbuscular mycorrhizal (AM) symbiosis have been identified primarily by mutant screens, followed by identification of the mutated genes (forward genetics). In addition, a number of AM-related genes has been identified by their AM-related expression patterns, and their function has subsequently been elucidated by knock-down or knock-out approaches (reverse genetics). However, genes that are members of functionally redundant gene families, or genes that have a vital function and therefore result in lethal mutant phenotypes, are difficult to identify. If such genes are constitutively expressed and therefore escape differential expression analyses, they remain elusive. The goal of this study was to systematically search for AM-related genes with a bioinformatics strategy that is insensitive to these problems. The central element of our approach is based on the fact that many AM-related genes are conserved only among AM-competent species. RESULTS: Our approach involves genome-wide comparisons at the proteome level of AM-competent host species with non-mycorrhizal species. Using a clustering method we first established orthologous/paralogous relationships and subsequently identified protein clusters that contain members only of the AM-competent species. Proteins of these clusters were then analyzed in an extended set of 16 plant species and ranked based on their relatedness among AM-competent monocot and dicot species, relative to non-mycorrhizal species. In addition, we combined the information on the protein-coding sequence with gene expression data and with promoter analysis. As a result we present a list of yet uncharacterized proteins that show a strongly AM-related pattern of sequence conservation, indicating that the respective genes may have been under selection for a function in AM. Among the top candidates are three genes that encode a small family of similar receptor-like kinases that are related to the S-locus receptor kinases involved in sporophytic self-incompatibility. CONCLUSIONS: We present a new systematic strategy of gene discovery based on conservation of the protein-coding sequence that complements classical forward and reverse genetics. This strategy can be applied to diverse other biological phenomena if species with established genome sequences fall into distinguished groups that differ in a defined functional trait of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Directed evolution of life through millions of years, such as increasing adult body size, is one of the most intriguing patterns displayed by fossil lineages. Processes and causes of such evolutionary trends are still poorly understood. Ammonoids (externally shelled marine cephalopods) are well known to have experienced repetitive morphological evolutionary trends of their adult size, shell geometry and ornamentation. This study analyses the evolutionary trends of the family Acrochordiceratidae Arthaber, 1911 from the Early to Middle Triassic (251228 Ma). Exceptionally large and bed-rock-controlled collections of this ammonoid family were obtained from strata of Anisian age (Middle Triassic) in north-west Nevada and north-east British Columbia. They enable quantitative and statistical analyses of its morphological evolutionary trends. This study demonstrates that the monophyletic clade Acrochordiceratidae underwent the classical evolute to involute evolutionary trend (i.e. increasing coiling of the shell), an increase in its shell adult size (conch diameter) and an increase in the indentation of its shell suture shape. These evolutionary trends are statistically robust and seem more or less gradual. Furthermore, they are nonrandom with the sustained shift in the mean, the minimum and the maximum of studied shell characters. These results can be classically interpreted as being constrained by the persistence and common selection pressure on this mostly anagenetic lineage characterized by relatively moderate evolutionary rates. Increasing involution of ammonites is traditionally interpreted by increasing adaptation mostly in terms of improved hydrodynamics. However, this trend in ammonoid geometry can also be explained as a case of Copes rule (increasing adult body size) instead of functional explanation of coiling, because both shell diameter and shell involution are two possible paths for ammonoids to accommodate size increase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning ability can be substantially improved by artificial selection in animals ranging from Drosophila to rats. Thus these species have not used their evolutionary potential with respect to learning ability, despite intuitively expected and experimentally demonstrated adaptive advantages of learning. This suggests that learning is costly, but this notion has rarely been tested. Here we report correlated responses of life-history traits to selection for improved learning in Drosophila melanogaster. Replicate populations selected for improved learning lived on average 15% shorter than the corresponding unselected control populations. They also showed a minor reduction in fecundity late in life and possibly a minor increase in dry adult mass. Selection for improved learning had no effect on egg-to-adult viability, development rate, or desiccation resistance. Because shortened longevity was the strongest correlated response to selection for improved learning, we also measured learning ability in another set of replicate populations that had been selected for extended longevity. In a classical olfactory conditioning assay, these long-lived flies showed an almost 40% reduction in learning ability early in life. This effect disappeared with age. Our results suggest a symmetrical evolutionary trade-off between learning ability and longevity in Drosophila.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Different studies have shown circadian variation of ischemic burden among patients with ST-Elevation Myocardial Infarction (STEMI), but with controversial results. The aim of this study was to analyze circadian variation of myocardial infarction size and in-hospital mortality in a large multicenter registry. METHODS: This retrospective, registry-based study was based on data from AMIS Plus, a large multicenter Swiss registry of patients who suffered myocardial infarction between 1999 and 2013. Peak creatine kinase (CK) was used as a proxy measure for myocardial infarction size. Associations between peak CK, in-hospital mortality, and the time of day at symptom onset were modelled using polynomial-harmonic regression methods. RESULTS: 6,223 STEMI patients were admitted to 82 acute-care hospitals in Switzerland and treated with primary angioplasty within six hours of symptom onset. Only the 24-hour harmonic was significantly associated with peak CK (p = 0.0001). The maximum average peak CK value (2,315 U/L) was for patients with symptom onset at 23:00, whereas the minimum average (2,017 U/L) was for onset at 11:00. The amplitude of variation was 298 U/L. In addition, no correlation was observed between ischemic time and circadian peak CK variation. Of the 6,223 patients, 223 (3.58%) died during index hospitalization. Remarkably, only the 24-hour harmonic was significantly associated with in-hospital mortality. The risk of death from STEMI was highest for patients with symptom onset at 00:00 and lowest for those with onset at 12:00. DISCUSSION: As a part of this first large study of STEMI patients treated with primary angioplasty in Swiss hospitals, investigations confirmed a circadian pattern to both peak CK and in-hospital mortality which were independent of total ischemic time. Accordingly, this study proposes that symptom onset time be incorporated as a prognosis factor in patients with myocardial infarction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Les champignons endomycorhiziens arbusculaires (CEA) forment des symbioses avec la plupart des plantes terrestres. Les CEA influencent la croissance des plantes et la biodiversité. Ils sont supposés avoir évolué de manière asexuée pendant au moins 400 millions d'années et aucune diversification morphologique majeure n'a été constatée. Pour ces raisons, les CEA sont considérés comme d'anciens asexués. Très peu d'espèces sont connues actuellement. Les individus de ces champignons contiennent des noyaux génétiquement différents dans un cytoplasme continu. La signification évolutive, la variabilité et la maintenance des génomes multiples au sein des individus sont inconnues. Ce travail a démontré qu'une population du CEA Glomus intraradices est génétiquement très variable. Nous avons conclu que les plantes hôtes plutôt que la différenciation géographique devraient être responsables de cette grande diversité. Puis nous avons cherché l'existence de recombinaison entre génotypes dans une population. Nous avons détecté un groupe recombinant au sein de la population, ce qui met en doute l'état d'anciens asexués des CEA. Nous avons également détecté l'occurrence de fusions d'hyphes et l'échange de noyaux entre isolats génétiquement différents. La descendance hybride issue de cet échange était viable et distincte phénotypiquement des isolats parentaux. En résumé, ce travail identifie des événements cruciaux dans le cycle de vie des CEA qui ont le potentiel d'influencer l'évolution de génomes multiples. L'étude des conséquences de ces événements sur les interactions avec les plantes hôtes pourrait éclaircir significativement la compréhension de la symbiose entre plantes et CEA. Abstract Arbuscular mycorrhizal fungi (AMF) are important symbionts of most land plants. AMF influence plant growth and biodiversity. Very few extant species are described. AMF are thought to have evolved asexually for at least 400 million years and no major morphological diversification has occurred. Due to these reasons, they were termed `ancient asexuals'. Fungal individuals harbour genetically different nuclei in a continuous cytoplasm. The variability, maintenance and evolutionary significance of multiple genomes within individuals are unknown. This work showed that a population of the AMF Glomus intraradices harbours very high genetic diversity. We concluded that host plants rather than geographic differentiation were responsible for this diversity. Furthermore, we investigated whether recombination occurred among genotypes of a G. intraradices population. The identification of a core group of recombining genotypes in the population refutes the assumption of ancient asexuality in AMF. We found that genetically different isolates can form hyphal fusions and exchange nuclei. The hybrid progeny produced by the exchange was viable and phenotypically distinct from the parental isolates. Taken together, this work provided evidence for key events in the AMF life cycle, that influence the evolution of multiple genomes. Studying the consequences of these events on the interaction with host plants may significantly further the understanding of the AMF-plant symbiosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of antibody-mediated targeting of antigenic MHC/peptide complexes on tumor cells in order to sensitize them to T-lymphocyte cytotoxicity represents an attractive new immunotherapy strategy. In vitro experiments have shown that an antibody chemically conjugated or fused to monomeric MHC/peptide can be oligomerized on the surface of tumor cells, rendering them susceptible to efficient lysis by MHC-peptide restricted specific T-cell clones. However, this strategy has not yet been tested entirely in vivo in immunocompetent animals. To this aim, we took advantage of OT-1 mice which have a transgenic T-cell receptor specific for the ovalbumin (ova) immunodominant peptide (257-264) expressed in the context of the MHC class I H-2K(b). We prepared and characterized conjugates between the Fab' fragment from a high-affinity monoclonal antibody to carcinoembryonic antigen (CEA) and the H-2K(b) /ova peptide complex. First, we showed in OT-1 mice that the grafting and growth of a syngeneic colon carcinoma line transfected with CEA could be specifically inhibited by systemic injections of the conjugate. Next, using CEA transgenic C57BL/6 mice adoptively transferred with OT-1 spleen cells and immunized with ovalbumin, we demonstrated that systemic injections of the anti-CEA-H-2K(b) /ova conjugate could induce specific growth inhibition and regression of well-established, palpable subcutaneous grafts from the syngeneic CEA-transfected colon carcinoma line. These results, obtained in a well-characterized syngeneic carcinoma model, demonstrate that the antibody-MHC/peptide strategy can function in vivo. Further preclinical experimental studies, using an anti-viral T-cell response, will be performed before this new form of immunotherapy can be considered for clinical use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim This study used data from temperate forest communities to assess: (1) five different stepwise selection methods with generalized additive models, (2) the effect of weighting absences to ensure a prevalence of 0.5, (3) the effect of limiting absences beyond the environmental envelope defined by presences, (4) four different methods for incorporating spatial autocorrelation, and (5) the effect of integrating an interaction factor defined by a regression tree on the residuals of an initial environmental model. Location State of Vaud, western Switzerland. Methods Generalized additive models (GAMs) were fitted using the grasp package (generalized regression analysis and spatial predictions, http://www.cscf.ch/grasp). Results Model selection based on cross-validation appeared to be the best compromise between model stability and performance (parsimony) among the five methods tested. Weighting absences returned models that perform better than models fitted with the original sample prevalence. This appeared to be mainly due to the impact of very low prevalence values on evaluation statistics. Removing zeroes beyond the range of presences on main environmental gradients changed the set of selected predictors, and potentially their response curve shape. Moreover, removing zeroes slightly improved model performance and stability when compared with the baseline model on the same data set. Incorporating a spatial trend predictor improved model performance and stability significantly. Even better models were obtained when including local spatial autocorrelation. A novel approach to include interactions proved to be an efficient way to account for interactions between all predictors at once. Main conclusions Models and spatial predictions of 18 forest communities were significantly improved by using either: (1) cross-validation as a model selection method, (2) weighted absences, (3) limited absences, (4) predictors accounting for spatial autocorrelation, or (5) a factor variable accounting for interactions between all predictors. The final choice of model strategy should depend on the nature of the available data and the specific study aims. Statistical evaluation is useful in searching for the best modelling practice. However, one should not neglect to consider the shapes and interpretability of response curves, as well as the resulting spatial predictions in the final assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A macromorphological study is made on taxa of the genusOrnithogalum subg.Heliocharmos in North Africa, Spain, and France. The results obtained are consistent with data from cytogenetics, reproductive biology and strategies of reproduction. They allow the retention of two species:O. algeriense and O. umbellatum. A biogeographical and phylogenetic interpretation of the subgenus is proposed for the western Mediterranean. Theoretical views on phenetics are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis is presented of the diversity and faunal turnover of Jurassic ammonites related to transgressive /regressive events. The data set contained 400 genera and 1548 species belonging to 67 ammonite zones covering the entire Jurassic System. These data were used in the construction of faunal turnover curves and ammonite diversities, that correlate with sea-level fluctuation curves. Twenty-four events of ammonite faunal turnover are analyzed throughout the Jurassic. The most important took place at the Sinemurian-Carixian boundary, latest Carixian-Middle Domerian, Domerian-Toarcian boundary, latest Middle Toarcian-Late Toarcian, Toarcian-Aalenian boundary, latest Aalenian-earliest Bajocian, latest Early Bajocian-earliest Late Bojocian, Early Bathonian-Middle Bathonian boundary, latest Middle Bathonian-earliest Late Bathonian, latest Bathonian-Early Callovian, earliest Early Oxfordian-Middle Oxfordian, earliest Late Oxfordian-latest Oxfordian, latest Early Kimmeridgian, Late Kimmeridgian, middle Early Tithonian and Early Tithonian-Late Tithonian boundary. More than 75 percent of these turnovers correlate with regressive-transgressive cycles in the Exxon, and /or Hallam's sea-level curves. Inmost cases the extinction events coincide with regressive intervals, whereas origination and radiation events are related to transgressive cycles. The turnovers frequently coincide with major or minor discontinuities in the Subbetic basin (Betic Cordillera).