162 resultados para Environmental Pollutants
Resumo:
Introduction: Exposure to environmental tobacco smoke (ETS) is a major environmental risk factor. Indoor contaminants come from a variety of sources, which can include inadequate ventilation, volatile organic compounds (VOCs), biological agents, combustion products, and ETS. Because ETS is one of the most frequent causes of IAQ complaints as well as the high mortality of passive smoking, in June 2004 the University of Geneva made the decision to ban smoking inside the so called "Uni-Mail" building, the biggest Swiss University human science building of recent construction, and the ordinance was applied beginning in October 2004. This report presents the finding related to the IAQ of the "Uni-Mail" building before and after smoking bans using nicotine, suspended dust, condensate and PAHs level in air as tracers to perform an assessment of passive tobacco exposure for non-smokers inside the building. Methods: Respirable particles (RSP) A real time aerosol monitor (model DataRAM)was place at sampling post 1, level ground floor. Condensate It consists in extracting any organic matter taken on the glass fibre filters by MeOH, and then measuring the total absorbent of the MeOH extract to the UV wavelength of 447 nm. Nicotine Nicotine was taken by means of cartridges containing of XAD-4 to the fixed flow of 0.5 L/min. The analytical method used for the determination of nicotine is based on gas chromatography with Nitrogen selective detector GC-NPD. Results: Figure 1 shows the box plot density display of 3 parameters before and after smoking bans for all 7 sampling posts: dust, condensate and nicotine in air in μg/m3. Conclusion: Before the smoking ban, the level of the concentrations of respirable particles (RSP) is raised more, average of the day 320 μg/m3, with peaks of more than 1000 μg/m3, compared with the values of the surrounding air between 22 and 30 μg/m3. The nicotine level is definitely more important (average 5.53 μg/m3, field 1.5 to 17.9 μg/m3). Once the smoking bans inside the building were applied, one notes a clear improvement in terms of concentrations of pollutants. For dust, the concentration fell by 3 times (average: 130 μg/m3, range: 40 to 160 μg/m3) and that of nicotine by 10 times (average: 0.53 μg/m3, range: 0 to 1.69 μg/m3) compared to that found before smoking bans. The outdoor air RSP concentration was 22 μg/m3 or 10 times lower. Nicotine seems to be the best tracer for ETS free of interference, independent of location or season.
Resumo:
Stable carbon and oxygen isotope analyses were conducted on pedogenic needle fibre calcite (NFC) from seven sites in areas with roughly similar temperate climates in Western Europe, including the Swiss Jura Mountains, eastern and southern France, northern Wales, and north-eastern Spain. The δ(13)C values (-12.5 to-6.8 0/00 Vienna Pee Dee Belemnite (VPDB)) record the predominant C(3) vegetation cover at the sites. A good correlation was found between mean monthly climatic parameters (air temperature, number of frost days, humidity, and precipitation) and δ(18)O values (-7.8 to-3.40/00 VPDB) of all the NFC. Similar seasonal variations of δ(18)O values for monthly NFC samples from the Swiss sites and those of mean monthly δ(18)O values of local precipitation and meteorological data point out precipitation and preferential growth/or recrystallisation of the pedogenic needle calcite during dry seasons. These covariations indicate the potential of stable isotope compositions of preserved NFC in fossil soil horizons as a promising tool for palaeoenvironmental reconstructions.
Resumo:
Significant quantities of antibiotics are used in all parts of the globe to treat diseases with bacterial origins. After ingestion, antibiotics are excreted by the patient and transmitted in due course to the aquatic environment. This study examined temporal fluctuations (monthly time scale) in antibiotic sources (ambulatory sales and data from a hospital dispensary) for Lausanne, Switzerland. Source variability (i.e., antibiotic consumption, monthly data for 2006-2010) were examined in detail for nine antibiotics--azithromycin, ciprofloxacin, clarithromycin, clindamycin, metronidazole, norfloxacin, ofloxacin, sulfamethoxazole and trimethoprim, from which two main conclusions were reached. First, some substances--azithromycin, clarithromycin, ciprofloxacin--displayed high seasonality in their consumption, with the winter peak being up to three times higher than the summer minimum. This seasonality in consumption resulted in seasonality in Predicted Environmental Concentrations (PECs). In addition, the seasonality in PECs was also influenced by that in the base wastewater flow. Second, the contribution of hospitals to the total load of antibiotics reaching the Lausanne Wastewater Treatment Plant (WTP) fluctuated markedly on a monthly time scale, but with no seasonal pattern detected. That is, there was no connection between fluctuations in ambulatory and hospital consumption for the substances investigated.
Resumo:
Background and Aims: To protect the population from environmental tobacco smoke (ETS) Switzerland introduced a nationwide rather heterogeneous smoking ban in May 2010. The exposure situation of non-smoking hospitality workers before and after implementation of the new law is being assessed in a prospective cohort study. Methods: Exposure to ETS was measured using a novel method developed by the Institute for Work and Health in Lausanne. It is a passive sampler called MoNIC (Monitor of NICotine). The nicotine of the ETS is fixed onto a filter and transformed into salt of not volatile nicotine. Subsequently the number of passively smoked cigarettes is calculated. Badges were placed at the workplace as well as distributed to the participants for personal measuring. Additionally a salivary sample was taken to determine nicotine concentration. Results: At baseline Spearman's correlation between workplace and personal badge was 0.47. The average cigarette equivalents per day at the workplace obtained by badge significantly dropped from 5.1 (95%- CI: 2.4 to 7.9) at baseline to 0.3 (0.2 to 0.4) at first follow-up (n=29) three months later (p<0.001). For personal badges the number of passively smoked cigarettes declined from 1.5 (2.7 to 0.4) per day to 0.5 (0.3 to 0.8) (n=16).Salivary nicotine concentration in a subset of 13 participants who had worked on the day prior to the examination was 2.63 ng/ml before and 1.53 ng/ml after the ban (p=0.04). Spearman's correlation of salivary nicotine was 0.56 with workplace badge and 0.79 with personal badge concentrations. Conclusions: Workplace measurements clearly reflect the smoking regulation in a venue. The MoNIC badge proves to be a sensitive measuring device to determine personal ETS exposure and it is a demonstrative measure for communication with lay audiences and study participants as the number of passively smoked cigarettes is an easily conceivable result.
Resumo:
BACKGROUND: Decreasing exposure to airborne particulates was previously associated with reduced age-related decline in lung function. However, whether the benefit from improved air quality depends on genetic background is not known. Recent evidence points to the involvement of the genes p53 and p21 and of the cell cycle control gene cyclin D1 (CCND1) in the response of bronchial cells to air pollution. OBJECTIVE: We determined in 4,326 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) whether four single-nucleotide polymorphisms in three genes [CCND1 (rs9344 [P242P], rs667515), p53 (rs1042522 [R72P]), and p21 (rs1801270 [S31R])] modified the previously observed attenuation of the decline in the forced expiratory flow between 25% and 75% of the forced vital capacity (FEF(25-75)) associated with improved air quality. METHODS: Subjects of the prospective population-based SAPALDIA cohort were assessed in 1991 and 2002 by spirometry, questionnaires, and biological sample collection for genotyping. We assigned spatially resolved concentrations of particulate matter with aerodynamic diameter < or = 10 microm (PM(10)) to each participant's residential history 12 months before the baseline and follow-up assessments. RESULTS: The effect of diminishing PM(10) exposure on FEF(25-75) decline appeared to be modified by p53 R72P, CCND1 P242P, and CCND1 rs667515. For example, a 10-microg/m(3) decline in average PM(10) exposure over an 11-year period attenuated the average annual decline in FEF(25-75) by 21.33 mL/year (95% confidence interval, 10.57-32.08) among participants homozygous for the CCND1 (P242P) GG genotype, by 13.72 mL/year (5.38-22.06) among GA genotypes, and by 6.00 mL/year (-4.54 to 16.54) among AA genotypes. CONCLUSIONS: Our results suggest that cell cycle control genes may modify the degree to which improved air quality may benefit respiratory function in adults.
Resumo:
The distribution of living organisms, habitats and ecosystems is primarily driven by abiotic environmental factors that are spatially structured. Assessing the spatial structure of environmental factors, e.g., through spatial autocorrelation analyses (SAC), can thus help us understand their scale of influence on the distribution of organisms, habitats, and ecosystems. Yet SAC analyses of environmental factors are still rarely performed in biogeographic studies. Here, we describe a novel framework that combines SAC and statistical clustering to identify scales of spatial patterning of environmental factors, which can then be interpreted as the scales at which those factors influence the geographic distribution of biological and ecological features. We illustrate this new framework with datasets at different spatial or thematic resolutions. This framework is conceptually and statistically robust, providing a valuable approach to tackle a wide range of issues in ecological and environmental research and particularly when building predictors for ecological models. The new framework can significantly promote fundamental research on all spatially-structured ecological patterns. It can also foster research and application in such fields as global change ecology, conservation planning, and landscape management.
Resumo:
The concentration of circulating glucocorticoids is regulated in response to environmental and endogenous conditions. Total circulating corticosterone, the main glucocorticoid in birds, consists of a fraction which is bound to corticosterone-binding globulins (CBG) and a free fraction. There is increasing evidence that the environment modulates free corticosterone levels through varying the concentration of CBG, but experimental evidence is lacking. To test the hypothesis that the regulation of chronic stress in response to endogenous and environmental conditions involves variation in both corticosterone release and CBG capacity, we performed an experiment with barn owl (Tyto alba) nestlings in two different years with pronounced differences in environmental conditions and in nestlings experimentally fed ad libitum. In half of the individuals we implanted a corticosterone-releasing pellet to artificially increase corticosterone levels and in the other half we implanted a placebo pellet. We then repeatedly collected blood samples to measure the change in total and free corticosterone levels as well as CBG capacity. The increase in circulating total corticosterone after artificial corticosterone administration varied with environmental conditions and with the food regime of the nestlings. The highest total corticosterone levels were found in nestlings growing up in poor environmental conditions and the lowest in ad libitum fed nestlings. CBG was highest in the year with poor environmental conditions, so that, contrary to total corticosterone, free corticosterone levels were low under poor environmental conditions. When nestlings were fed ad libitum total corticosterone, CBG and free corticosterone did not increase when administering corticosterone. These results suggest that depending on the individual history an animal experienced during development the HPA-axis is regulated differently.
Resumo:
We studied the distribution of Palearctic green toads (Bufo viridis subgroup), an anuran species group with three ploidy levels, inhabiting the Central Asian Amudarya River drainage. Various approaches (one-way, multivariate, components variance analyses and maximum entropy modelling) were used to estimate the effect of altitude, precipitation, temperature and land vegetation covers on the distribution of toads. It is usually assumed that polyploid species occur in regions with harsher climatic conditions (higher latitudes, elevations, etc.), but for the green toads complex, we revealed a more intricate situation. The diploid species (Bufo shaartusiensis and Bufo turanensis) inhabit the arid lowlands (from 44 to 789 m a.s.l.), while tetraploid Bufo pewzowi were recorded in mountainous regions (340-3492 m a.s.l.) with usually lower temperatures and higher precipitation rates than in the region inhabited by diploid species. The triploid species Bufo baturae was found in the Pamirs (Tajikistan) at the highest altitudes (2503-3859 m a.s.l.) under the harshest climatic conditions.
Resumo:
Colloidal transport has been shown to enhance the migration of plutonium in groundwater downstream from contaminated sites, but little is known about the adsorption of ⁹⁰Sr and plutonium onto colloids in the soil solution of natural soils. We sampled soil solutions using suction cups, and separated colloids using ultrafiltration to determine the distribution of ²³⁹Pu and ⁹⁰Sr between the truly dissolved fraction and the colloidal fraction of the solutions of three Alpine soils contaminated only by global fallout from the nuclear weapon tests. Plutonium was essentially found in the colloidal fraction (>80%) and probably associated with organic matter. A significant amount of colloidal ⁹⁰Sr was detected in organic-rich soil solutions. Our results suggest that binding to organic colloids in the soil solutions plays a key role with respect to the mobility of plutonium in natural alpine soils and, to a lesser extent, to the mobility of ⁹⁰Sr.