240 resultados para EVOLUTIONARY PATTERN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MOTIVATION: Supporting the functionality of recent duplicate gene copies is usually difficult, owing to high sequence similarity between duplicate counterparts and shallow phylogenies, which hamper both the statistical and experimental inference. RESULTS: We developed an integrated evolutionary approach to identify functional duplicate gene copies and other lineage-specific genes. By repeatedly simulating neutral evolution, our method estimates the probability that an ORF was selectively conserved and is therefore likely to represent a bona fide coding region. In parallel, our method tests whether the accumulation of non-synonymous substitutions reveals signatures of selective constraint. We show that our approach has high power to identify functional lineage-specific genes using simulated and real data. For example, a coding region of average length (approximately 1400 bp), restricted to hominoids, can be predicted to be functional in approximately 94-100% of cases. Notably, the method may support functionality for instances where classical selection tests based on the ratio of non-synonymous to synonymous substitutions fail to reveal signatures of selection. Our method is available as an automated tool, ReEVOLVER, which will also be useful to systematically detect functional lineage-specific genes of closely related species on a large scale. AVAILABILITY: ReEVOLVER is available at http://www.unil.ch/cig/page7858.html.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional divergence between homologous proteins is expected to affect amino acid sequences in two main ways, which can be considered as proxies of biochemical divergence: a "covarion-like" pattern of correlated changes in evolutionary rates, and switches in conserved residues ("conserved but different"). Although these patterns have been used in case studies, a large-scale analysis is needed to estimate their frequency and distribution. We use a phylogenomic framework of animal genes to answer three questions: 1) What is the prevalence of such patterns? 2) Can we link such patterns at the amino acid level with selection inferred at the codon level? 3) Are patterns different between paralogs and orthologs? We find that covarion-like patterns are more frequently detected than "constant but different," but that only the latter are correlated with signal for positive selection. Finally, there is no obvious difference in patterns between orthologs and paralogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contrasting with birds and mammals, most ectothermic vertebrates present homomorphic sex chromosomes, which might be due either to a high turnover rate or to occasional X-Y recombination. We tested these two hypotheses in a group of Palearctic green toads that diverged some 3.3 million years ago. Using sibship analyses of sex-linked markers, we show that all four species investigated share the same pair of sex chromosomes and a pattern of male heterogamety with drastically reduced X-Y recombination in males. Phylogenetic analyses of sex-linked sequences show that X and Y alleles cluster by species, not by gametolog. We conclude that X-Y homomorphy and fine-scale sequence similarity in these species do not stem from recent sex-chromosome turnovers, but from occasional X-Y recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACTIn contrast to animals, plants cannot move from their place of birth and, therefore, need to adapt to their particular habitat in order to survive. Thus, plant development is remarkably plastic, making plants an ideal system for the isolation of genes that account for intraspecific natural variation and possibly environmental adaptation. However, to date, this approach mostly identified null alleles and missed mutations with subtle effects. For instance, BREVIS RADIX (BRX) has been isolated as a key regulator of root growth through a naturally occurring loss-of-function allele in the Arabidopsis thaliana accession Uk-1 and is the founding member of a highly-conserved plant-specific gene family.In this work, we show that a strong selective pressure is acting on the BRX gene family and dates back before the monocot-dicot divergence. However, functional diversification is observed mainly in dicotyledon BRX family genes and is correlated with acceleration in the evolutionary rates in the N-terminal regions. Population genetic data revealed that BRX is highly conserved across Arabidopsis accessions and presents signatures of adaptation. Interestingly, a seven amino acid deletion polymorphism in BRX sequence was found in a few accessions, which seems to be responsible for their enhanced primary root growth. Nevertheless, BRX might not only be active in the root, as suggested by its expression in the shoot. Indeed, leaves and cotyledons of brx mutants are significantly smaller than wild- type. This phenotype is a direct consequence of the absence of BRX function in the shoot rather than an indirect effect of an altered root system growth. Interestingly, cotyledons of brx plants reflect the same physiological defects as the root. Moreover, phenotypes in BRX gain-of-function plants, such as epinastic leaves and increased epidermal cell size, could be associated with an increase in leaf brassinosteroid content.Collectively, these results indicate that BRX contributes to local adaptation by ubiquitously regulating plant growth, probably through the modulation of brassinosteroid biosynthesis.RÉSUMÉContrairement à la plupart des animaux, les plantes ne peuvent se mouvoir et doivent ainsi s'adapter à leur environnement pour survivre. Pour cette raison, elles représentent un système idéal pour l'identification de gènes contribuant à la variation naturelle intra- spécifique, ainsi qu'à l'adaptation. Cependant, cette approche a, jusqu'à présent, surtout permis d'isoler des allèles nuls et non des mutations conférant des effets plus subtiles. C'est le cas du gène Β REVIS RADIX (BRX), un régulateur clé de la croissance racinaire, qui a été identifié grâce à un allèle non-fonctionnel présent dans l'accession naturelle d'Arabidopsis thaliana Uk-1. BRX et ses homologues des plantes mono- et dicotylédones forment une famille très conservée et spécifique aux plantes.Dans ce travail, nous démontrons que la famille de gènes BRX est soumise à une forte pression de sélection qui remonte avant la divergence entre mono- et dicotylédones. Cependant, une diversification fonctionnelle a été observée chez les gènes des dicotylédones et corrèle avec une accélération de la vitesse d'évolution dans leur région N- terminale. Une analyse génétique de différentes accessions naturelles d'Arabidopsis a révélé que BRX est hautement conservé et présente des signatures d'adaptation. Remarquablement, un polymorphisme de délétion de sept acides aminés a été détecté dans quelques accessions et a pour conséquence une plus forte croissance de la racine primaire. Néanmoins, il semble que le rôle de BRX ne se limite pas qu'à la racine, comme indiqué par son expression dans les parties aériennes de la plante. En effet, les mutants brx présentent des cotylédons et des feuilles significativement plus petits que le type sauvage, une conséquence directe de l'absence d'activité de BRX dans ces organes. Nous avons aussi noté que les cotylédons des mutants brx, à l'instar des racines, ont une perception altérée de l'auxine et peuvent être complémentés par l'application exogène de brassinostéroïdes. De plus, dans des plantes présentant un gain de fonction BRX, les feuilles sont épinastiques et les cellules de leur épiderme plus grandes. Ces phénotypes sont accompagnés d'une augmentation de la concentration de brassinostéroïdes dans les feuilles. Conjointement, ces résultats démontrent que BRX contribue à une adaptation locale de la plante par la régulation générale de sa croissance, probablement en modulant la biosynthèse des brassinostéroïdes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine mammals are often reported to possess reduced variation of major histocompatibility complex (MHC) genes compared with their terrestrial counterparts. We evaluated diversity at two MHC class II B genes, DQB and DRB, in the New Zealand sea lion (Phocarctos hookeri, NZSL) a species that has suffered high mortality owing to bacterial epizootics, using Sanger sequencing and haplotype reconstruction, together with next-generation sequencing. Despite this species' prolonged history of small population size and highly restricted distribution, we demonstrate extensive diversity at MHC DRB with 26 alleles, whereas MHC DQB is dimorphic. We identify four DRB codons, predicted to be involved in antigen binding, that are evolving under adaptive evolution. Our data suggest diversity at DRB may be maintained by balancing selection, consistent with the role of this locus as an antigen-binding region and the species' recent history of mass mortality during a series of bacterial epizootics. Phylogenetic analyses of DQB and DRB sequences from pinnipeds and other carnivores revealed significant allelic diversity, but little phylogenetic depth or structure among pinniped alleles; thus, we could neither confirm nor refute the possibility of trans-species polymorphism in this group. The phylogenetic pattern observed however, suggests some significant evolutionary constraint on these loci in the recent past, with the pattern consistent with that expected following an epizootic event. These data may help further elucidate some of the genetic factors underlying the unusually high susceptibility to bacterial infection of the threatened NZSL, and help us to better understand the extent and pattern of MHC diversity in pinnipeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) constitute an important class of gene regulators. While models have been proposed to explain their appearance and expansion, the validation of these models has been difficult due to the lack of comparative studies. Here, we analyze miRNA evolutionary patterns in two mammals, human and mouse, in relation to the age of miRNA families. In this comparative framework, we confirm some predictions of previously advanced models of miRNA evolution, e.g. that miRNAs arise more frequently de novo than by duplication, or that the number of protein-coding gene targeted by miRNAs decreases with evolutionary time. We also corroborate that miRNAs display an increase in expression level with evolutionary time, however we show that this relation is largely tissue-dependent, and especially low in embryonic or nervous tissues. We identify a bias of tag-sequencing techniques regarding the assessment of breadth of expression, leading us, contrary to predictions, to find more tissue-specific expression of older miRNAs. Together, our results refine the models used so far to depict the evolution of miRNA genes. They underline the role of tissue-specific selective forces on the evolution of miRNAs, as well as the potential co-evolution patterns between miRNAs and the protein-coding genes they target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: An improved understanding of how recombination affects the evolutionary history of HIV is crucial to understand its current and future evolution. The present review aims to disentangle the manifold effects of recombination on HIV by discussing its effects on the evolutionary history and the adaptive potential of HIV in the context of concepts from evolutionary genetics and genomics. RECENT FINDINGS: The increasing occurrence of secondary contacts between divergent subtype populations (during coinfection) results in increased observations of recombinants worldwide. Recombination is heterogeneous along the HIV genome. Consequences of recombination of HIV evolution are, in combination with other demographic processes, expected to either homogenize the genetic composition of HIV populations (homogenization) or provide the potential for novel adaptations (diversification). New methods in population genomics allow deep characterization of recombinant genome (the segment composition and origin) and their evolutionary trajectories. SUMMARY: HIV recombinants increase worldwide and invade geographical regions where pure subtypes were previously predominant. This trend is expected to continue in the future, as ease to travel worldwide increases opportunities for recombination between divergent HIV strains. While the effects of recombination in HIV are much researched, more effort is required to characterize current HIV recombinant composition and dynamics. This can be achieved with new population genetic and genomic methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Dietary conditions affect cognitive abilities of many species, but it is unclear to what extent this physiological effect translates into an evolutionary relationship. 2. A reduction of competitive ability under nutritional stress has been reported as a correlated response to selection for learning ability in Drosophila melanogaster. Here we test whether the reverse holds as well, i.e. whether an evolutionary adaptation to poor food conditions leads to a decrease in learning capacities. 3. Populations of D. melanogaster were: (i) not subject to selection (control), (ii) selected for improved learning ability, (iii) selected for survival and fast development on poor food, or (iv) subject to both selection regimes. 4. There was no detectable response to selection for learning ability. 5. Selection on poor food led to higher survival, faster development and smaller adult size as a direct response, and to reduced learning ability as a correlated response. This study supports the hypothesis that adaptation to poor nutrition is likely to trade off with the evolution of improved learning ability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The age-dependent choice between expressing individual learning (IL) or social learning (SL) affects cumulative cultural evolution. A learning schedule in which SL precedes IL is supportive of cumulative culture because the amount of nongenetically encoded adaptive information acquired by previous generations can be absorbed by an individual and augmented. Devoting time and energy to learning, however, reduces the resources available for other life-history components. Learning schedules and life history thus coevolve. Here, we analyze a model where individuals may have up to three distinct life stages: "infants" using IL or oblique SL, "juveniles" implementing IL or horizontal SL, and adults obtaining material resources with learned information. We study the dynamic allocation of IL and SL within life stages and how this coevolves with the length of the learning stages. Although no learning may be evolutionary stable, we find conditions where cumulative cultural evolution can be selected for. In that case, the evolutionary stable learning schedule causes individuals to use oblique SL during infancy and a mixture between IL and horizontal SL when juvenile. We also find that the selected pattern of oblique SL increases the amount of information in the population, but horizontal SL does not do so.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of MRI examinations in 88 neonates and infants with perinatal asphyxia, we defined 6 different patterns on T2-weighted images: pattern A--scattered hyperintensity of both hemispheres of the telencephalon with blurred border zones between cortex and white matter, indicating diffuse brain injury; pattern B--parasagittal hyperintensity extending into the corona radiata, corresponding to the watershed zones; pattern C--hyper- and hypointense lesions in thalamus and basal ganglia, which relate to haemorrhagic necrosis or iron deposition in these areas; pattern D--periventricular hyperintensity, mainly along the lateral ventricles, i.e. periventricular leukomalacia (PVL), originating from the matrix zone; pattern E--small multifocal lesions varying from hyper--to hypointense, interpreted as necrosis and haemorrhage; pattern F--periventricular centrifugal hypointense stripes in the centrum semiovale and deep white matter of the frontal and occipital lobes. Contrast was effectively inverted on T1-weighted images. Patterns A, B and C were found in 17%, 25% and 37% of patients, and patterns D, E and F in 19%, 17% and 35%, respectively. In 49 patients a combination of patterns was observed, but 30% of the initial images were normal. At follow-up, persistent abnormalities were seen in all children with patterns A and D, but in only 52% of those with pattern C. Myelination was retarded most often in patients with diffuse brain injury and PVL (patterns A and D).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial variation in the pattern of natural selection can promote local adaptation and genetic differentiation between populations. Because heritable melanin-based ornaments can signal resistance to environmentally mediated elevation in glucocorticoids, to oxidative stress and parasites, populations may vary in the mean degree of melanic coloration if selection on these phenotypic aspects varies geographically. Within a population of Swiss barn owls (Tyto alba), the size of eumelanic spots is positively associated with survival, immunity and resistance to stress, but it is yet unknown whether Tyto species that face stressful environments evolved towards a darker eumelanic plumage. Because selection regimes vary along environmental gradients, we examined whether melanin-based traits vary clinally and are expressed to a larger extent in the tropics where parasites are more abundant than in temperate zones. To this end, we considered 39 barn owl species distributed worldwide. Barn owl species living in the tropics displayed larger eumelanic spots than those found in temperate zones. This was, however, verified in the northern hemisphere only. Parasites being particularly abundant in the tropics, they may promote the evolution of darker eumelanic ornaments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SAMHD1 has recently been identified as an HIV-1 restriction factor operating in myeloid cells. As a countermeasure, the Vpx accessory protein from HIV-2 and certain lineages of SIV have evolved to antagonize SAMHD1 by inducing its ubiquitin-proteasome-dependent degradation. Here, we show that SAMHD1 experienced strong positive selection episodes during primate evolution that occurred in the Catarrhini ancestral branch prior to the separation between hominoids (gibbons and great apes) and Old World monkeys. The identification of SAMHD1 residues under positive selection led to mapping the Vpx-interaction domain of SAMHD1 to its C-terminal region. Importantly, we found that while SAMHD1 restriction activity toward HIV-1 is evolutionarily maintained, antagonism of SAMHD1 by Vpx is species-specific. The distinct evolutionary signature of SAMHD1 sheds light on the development of its antiviral specificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary processes acting at the expanding margins of a species' range are still poorly understood. Genetic drift is considered prevalent in marginal populations, and the maintenance of genetic diversity during recolonization might seem puzzling. To investigate such processes, a fine-scale investigation of 219 individuals was performed within a population of Biscutella laevigata (Brassicaceae), located at the leading edge of its range. The survey used amplified fragment length polymorphisms (AFLPs). As commonly reported across the whole species distribution range, individual density and genetic diversity decreased along the local axis of recolonization of this expanding population, highlighting the enduring effect of the historical colonization on present-day diversity. The self-incompatibility system of the plant may have prevented local inbreeding in newly found patches and sustained genetic diversity by ensuring gene flow from established populations. Within the more continuously populated region, spatial analysis of genetic structure revealed restricted gene flow among individuals. The distribution of genotypes formed a mosaic of relatively homogenous patches within the continuous population. This pattern could be explained by a history of expansion by long-distance dispersal followed by fine-scale diffusion (that is, a stratified dispersal combination). The secondary contact among expanding patches apparently led to admixture among differentiated genotypes where they met (that is, a reshuffling effect). This type of dynamics could explain the maintenance of genetic diversity during recolonization.