63 resultados para Dominant logic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder characterized by numerous fluid-filled cysts that frequently result in end-stage renal disease. While promising treatment options are in advanced clinical development, early diagnosis and follow-up remain a major challenge. We therefore evaluated the diagnostic value of Fetuin-A as a new biomarker of ADPKD in human urine. RESULTS: We found that renal Fetuin-A levels are upregulated in both Pkd1 and Bicc1 mouse models of ADPKD. Measurement by ELISA revealed that urinary Fetuin-A levels were significantly higher in 66 ADPKD patients (17.5 ± 12.5 μg/mmol creatinine) compared to 17 healthy volunteers (8.5 ± 3.8 μg/mmol creatinine) or 50 control patients with renal diseases of other causes (6.2 ± 2.9 μg/mmol creatinine). Receiver operating characteristics (ROC) analysis of urinary Fetuin-A levels for ADPKD rendered an optimum cut-off value of 12.2 μg/mmol creatinine, corresponding to 94% of sensitivity and 60% of specificity (area under the curve 0.74 ; p = 0.0019). Furthermore, urinary Fetuin-A levels in ADPKD patients correlated with the degree of renal insufficiency and showed a significant increase in patients with preserved renal function followed for two years. CONCLUSIONS: Our findings establish urinary Fetuin-A as a sensitive biomarker of the progression of ADPKD. Further studies are required to examine the pathogenic mechanisms of elevated renal and urinary Fetuin-A in ADPKD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations of the huntingtin protein (HTT) gene underlie both adult-onset and juvenile forms of Huntington's disease (HD). HTT modulates mitotic spindle orientation and cell fate in mouse cortical progenitors from the ventricular zone. Using human embryonic stem cells (hESC) characterized as carrying mutations associated with adult-onset disease during pre-implantation genetic diagnosis, we investigated the influence of human HTT and of an adult-onset HD mutation on mitotic spindle orientation in human neural stem cells (NSCs) derived from hESCs. The RNAi-mediated silencing of both HTT alleles in neural stem cells derived from hESCs disrupted spindle orientation and led to the mislocalization of dynein, the p150Glued subunit of dynactin and the large nuclear mitotic apparatus (NuMA) protein. We also investigated the effect of the adult-onset HD mutation on the role of HTT during spindle orientation in NSCs derived from HD-hESCs. By combining SNP-targeting allele-specific silencing and gain-of-function approaches, we showed that a 46-glutamine expansion in human HTT was sufficient for a dominant-negative effect on spindle orientation and changes in the distribution within the spindle pole and the cell cortex of dynein, p150Glued and NuMA in neural cells. Thus, neural derivatives of disease-specific human pluripotent stem cells constitute a relevant biological resource for exploring the impact of adult-onset HD mutations of the HTT gene on the division of neural progenitors, with potential applications in HD drug discovery targeting HTT-dynein-p150Glued complex interactions.