245 resultados para Differential Responses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical-basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non-cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non-cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathogenic bacterium Pseudomonas aeruginosa utilizes the 3-oxododecanoyl homoserine lactone (3OC(12)-HSL) autoinducer as a signaling molecule to coordinate the expression of virulence genes through quorum sensing. 3OC(12)-HSL also affects responses in host cells, including the upregulation of genes encoding inflammatory cytokines. This proinflammatory response may exacerbate underlying disease during P. aeruginosa infections. The specific mechanism(s) through which 3OC(12)-HSL influences host responses is unclear, and no mammalian receptors for 3OC(12)-HSL have been identified to date. Here, we report that 3OC(12)-HSL increases mRNA levels for a common panel of proinflammatory genes in murine fibroblasts and human lung epithelial cells. To identify putative 3OC(12)-HSL receptors, we examined the expression patterns of a panel of nuclear hormone receptors in these two cell lines and determined that both peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and PPARgamma were expressed. 3OC(12)-HSL functioned as an agonist of PPARbeta/delta transcriptional activity and an antagonist of PPARgamma transcriptional activity and inhibited the DNA binding ability of PPARgamma. The proinflammatory effect of 3OC(12)-HSL in lung epithelial cells was blocked by the PPARgamma agonist rosiglitazone, suggesting that 3OC(12)-HSL and rosiglitazone are mutually antagonistic negative and positive regulators of PPARgamma activity, respectively. These data identify PPARbeta/delta and PPARgamma as putative mammalian 3OC(12)-HSL receptors and suggest that PPARgamma agonists may be employed as anti-inflammatory therapeutics for P. aeruginosa infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Hepatitis C virus (HCV) infection is a major cause of morbidity in HIV infected individuals. Coinfection with HIV is associated with diminished HCV-specific immune responses and higher HCV RNA levels. AIMS: To investigate whether long-term combination antiretroviral therapy (cART) restores HCV-specific T cell responses and improves the control of HCV replication. METHODS: T cell responses were evaluated longitudinally in 80 HIV/HCV coinfected individuals by ex vivo interferon-gamma-ELISpot responses to HCV core peptides, that predominantly stimulate CD4(+) T cells. HCV RNA levels were assessed by real-time PCR in 114 individuals. RESULTS: The proportion of individuals with detectable T cell responses to HCV core peptides was 19% before starting cART, 24% in the first year on cART and increased significantly to 45% and 49% after 33 and 70 months on cART (p=0.001). HCV-specific immune responses increased in individuals with chronic (+31%) and spontaneously cleared HCV infection (+30%). Median HCV RNA levels before starting cART were 6.5 log(10) IU/ml. During long-term cART, median HCV-RNA levels slightly decreased compared to pre-cART levels (-0.3 log10 IU/ml, p=0.02). CONCLUSIONS: Successful cART is associated with increasing cellular immune responses to HCV core peptides and with a slight long-term decrease in HCV RNA levels. These findings are in line with the favourable clinical effects of cART on the natural history of hepatitis C and with the current recommendation to start cART earlier in HCV/HIV coinfected individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drinking motives (DM) reflect the reasons why individuals drink alcohol. Weekdays are mainly dedicated to work, whereas weekends are generally associated with spending time with friends during special events or leisure activities; using alcohol on weekdays and weekends may also be related to different DM. This study examined whether DM were differentially associated with drinking volume (DV) on weekdays and weekends. A representative sample of 5,391 young Swiss men completed a questionnaire assessing weekday and weekend DV, as well as their DM, namely, enhancement, social, coping, and conformity motives. Associations of DM with weekday and weekend DV were examined using structural equation models. Each DM was tested individually in a separate model; all associations were positive and generally stronger (except conformity) for weekend rather than for weekday DV. Further specific patterns of association were found when DM were entered into a single model simultaneously. Associations with weekday and with weekend DV were positive for enhancement and coping motives. However, associations were stronger with weekend rather than with weekday DV for enhancement, and stronger with weekday than with weekend DV for coping motives. Associations of social motives were not significant with weekend DV and negative with weekday DV. Conformity motives were negatively associated with weekend DV and positively related to weekday DV. These results suggest that interventions targeting enhancement motives should be particularly effective at decreasing weekend drinking, whereas interventions targeted at coping motives would be particularly effective at reducing alcohol use on weekdays. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HCV infection has a severe course of disease in HIV/HCV co-infection and in liver transplant recipients. However, the mechanisms involved remain unclear. Here, we evaluated functional profiles of HCV-specific T-cell responses in 86 HCV mono-infected patients, 48 HIV/HCV co-infected patients and 42 liver transplant recipients. IFN-gamma and IL-2 production and ability of CD4 and CD8 T cells to proliferate were assessed after stimulation with HCV-derived peptides. We observed that HCV-specific T-cell responses were polyfunctional in HCV mono-infected patients, with presence of proliferating single IL-2-, dual IL-2/IFN-gamma and single IFN-gamma-producing CD4+ and dual IL-2/IFN-gamma and single IFN-gamma-producing CD8+ cells. In contrast, HCV-specific T-cell responses had an effector profile in HIV/HCV co-infected individuals and liver transplant recipients with absence of single IL-2-producing HCV-specific CD4+ and dual IL-2/IFN-gamma-producing CD8+ T cells. In addition, HCV-specific proliferation of CD4+ and CD8+ T cells was severely impaired in HIV/HCV co-infected patients and liver transplant recipients. Importantly, "only effector" T-cell responses were associated with significantly higher HCV viral load and more severe liver fibrosis scores. Therefore, the present results suggest that immune-based mechanisms may contribute to explain the accelerated course of HCV infection in conditions of HIV-1 co-infection and liver transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human imaging studies examining fear conditioning have mainly focused on the neural responses to conditioned cues. In contrast, the neural basis of the unconditioned response and the mechanisms by which fear modulates inter-regional functional coupling have received limited attention. We examined the neural responses to an unconditioned stimulus using a partial-reinforcement fear conditioning paradigm and functional MRI. The analysis focused on: (1) the effects of an unconditioned stimulus (an electric shock) that was either expected and actually delivered, or expected but not delivered, and (2) on how related brain activity changed across conditioning trials, and (3) how shock expectation influenced inter-regional coupling within the fear network. We found that: (1) the delivery of the shock engaged the red nucleus, amygdale, dorsal striatum, insula, somatosensory and cingulate cortices, (2) when the shock was expected but not delivered, only the red nucleus, the anterior insular and dorsal anterior cingulate cortices showed activity increases that were sustained across trials, and (3) psycho-physiological interaction analysis demonstrated that fear led to increased red nucleus coupling to insula but decreased hippocampus coupling to the red nucleus, thalamus and cerebellum. The hippocampus and the anterior insula may serve as hubs facilitating the switch between engagement of a defensive immediate fear network and a resting network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the hormonal pathway controlling genotype-specific norms of reaction would shed light on the ecological factors to which each genotype is adapted. Environmentally mediated changes in the sign and magnitude of covariations between heritable melanin-based colouration and fitness components are frequent, revealing that extreme melanin-based phenotypes can display different physiological states depending on the environment. Yet, the hormonal mechanism underlying this phenomenon is poorly understood. One novel hypothesis proposes that these covariations stem from pleiotropic effects of the melanocortin system. Melanocortins are post-translationally modified bioactive peptides derived from the POMC prohormone that are involved in melanogenesis, anti-inflammation, energy homeostasis and stress responses. Thus, differential regulation of fitness components in relation to environmental factors by pale and dark melanic individuals may be due to colour-specific regulation of the POMC prohormone. Accordingly, we found that the degree of reddish melanic colouration was negatively correlated with blood circulating levels of the POMC prohormone in female tawny owls (Strix aluco) rearing a brood for which the size was experimentally reduced, but not when enlarged, and in females located in rich but not in poor territories. Our findings support the hypothesis that the widespread links between melanin-based colouration and fitness components may be mediated, at least in part, by the melanocortin system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of synthetic P. falciparum (NANP)n circumsporozoite peptides to elicit murine T cell proliferative responses was studied. When C57BL/6, C3H, and DBA/2 mice were injected with (NANP)40, only C57BL/6 (H-2b)-immune lymph node cells proliferated on restimulation in vitro with the same peptide. By using anti-I-A monoclonal antibodies or spleen cells from congenic H-2b mice as a source of antigen-presenting cells, the T cell proliferative response was shown to be restricted to the I-Ab region of the C57BL/6 haplotype. These results are in agreement with previous experiments which demonstrated that the anti-(NANP)40 antibody response was uniquely restricted to C57BL/6 (H-2b) mice. Several C57BL/6 long-term (NANP)n-specific T cell lines and clones were derived. All of the clones exhibited the L3T4 helper T cell phenotype. A considerable heterogeneity of T cell responses was observed when the lines and clones were stimulated with different concentrations of the various peptides studied. The results, together with the observed genetic restriction for both antibody and T cell responses, suggest that perhaps not all individuals who receive a similar repetitive tetrapeptide sporozoite malaria vaccine will develop T cell and or antibody responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The induction of potent CD8+ T cell responses by vaccines to fight microbes or tumors remains a major challenge, as many candidates for human vaccines have proved to be poorly immunogenic. Deoxycytidyl-deoxyguanosin oligodeoxynucleotides (CpG ODNs) trigger Toll-like receptor 9, resulting in dendritic cell maturation that can enhance immunogenicity of peptide-based vaccines in mice. We tested whether a synthetic ODN, CpG 7909, could improve human tumor antigen-specific CD8+ T cell responses. Eight HLA-A2+ melanoma patients received 4 monthly vaccinations of low-dose CpG 7909 mixed with melanoma antigen A (Melan-A; identical to MART-1) analog peptide and incomplete Freund's adjuvant. All patients exhibited rapid and strong antigen-specific T cell responses: the frequency of Melan-A-specific T cells reached over 3% of circulating CD8+ T cells. This was one order of magnitude higher than the frequency seen in 8 control patients treated similarly but without CpG and 1-3 orders of magnitude higher than that seen in previous studies with synthetic vaccines. The enhanced T cell populations consisted primarily of effector memory cells, which in part secreted IFN- and expressed granzyme B and perforin ex vivo. In vitro, T cell clones recognized and killed melanoma cells in an antigen-specific manner. Thus, CpG 7909 is an efficient vaccine adjuvant that promotes strong antigen-specific CD8+ T cell responses in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: We characterized the pupil responses that reflect rod, cone, and melanopsin function in a genetically homogeneous cohort of patients with autosomal dominant retinitis pigmentosa (adRP). METHODS: Nine patients with Gly56Arg mutation of the NR2E3 gene and 12 control subjects were studied. Pupil and subjective visual responses to red and blue light flashes over a 7 log-unit range of intensities were recorded under dark and light adaptation. The pupil responses were plotted against stimulus intensity to obtain red-light and blue-light response curves. RESULTS: In the dark-adapted blue-light stimulus condition, patients showed significantly higher threshold intensities for visual perception and for a pupil response compared to controls (P = 0.02 and P = 0.006, respectively). The rod-dependent, blue-light pupil responses decreased with disease progression. In contrast, the cone-dependent pupil responses (light-adapted red-light stimulus condition) did not differ between patients and controls. The difference in the retinal sensitivity to blue and red stimuli was the most sensitive parameter to detect photoreceptor dysfunction. Unexpectedly, the melanopsin-mediated pupil response was decreased in patients (P = 0.02). CONCLUSIONS: Pupil responses of patients with NR2E3-associated adRP demonstrated reduced retinal sensitivity to dim blue light under dark adaptation, presumably reflecting decreased rod function. Rod-dependent pupil responses were quantifiable in all patients, including those with non-recordable scotopic electroretinogram, and correlated with the extent of clinical disease. Thus, the chromatic pupil light reflex can be used to monitor photoreceptor degeneration over a larger range of disease progression compared to standard electrophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME : La douleur neuropathique est le résultat d'une lésion ou d'un dysfonctionnement du système nerveux. Les symptômes qui suivent la douleur neuropathique sont sévères et leur traitement inefficace. Une meilleure approche thérapeutique peut être proposée en se basant sur les mécanismes pathologiques de la douleur neuropathique. Lors d'une lésion périphérique une douleur neuropathique peut se développer et affecter le territoire des nerfs lésés mais aussi les territoires adjacents des nerfs non-lésés. Une hyperexcitabilité des neurones apparaît au niveau des ganglions spinaux (DRG) et de la corne dorsale (DH) de la moelle épinière. Le but de ce travail consiste à mettre en évidence les modifications moléculaires associées aux nocicepteurs lésés et non-lésés au niveau des DRG et des laminae I et II de la corne dorsale, là où l'information nociceptive est intégrée. Pour étudier les changements moléculaires liés à la douleur neuropathique nous utilisons le modèle animal d'épargne du nerf sural (spared nerve injury model, SNI) une semaine après la lésion. Pour la sélection du tissu d'intérêt nous avons employé la technique de la microdissection au laser, afin de sélectionner une sous-population spécifique de cellules (notamment les nocicepteurs lésés ou non-lésés) mais également de prélever le tissu correspondant dans les laminae superficielles. Ce travail est couplé à l'analyse à large spectre du transcriptome par puce ADN (microarray). Par ailleurs, nous avons étudié les courants électriques et les propriétés biophysiques des canaux sodiques (Na,,ls) dans les neurones lésés et non-lésés des DRG. Aussi bien dans le système nerveux périphérique, entre les neurones lésés et non-lésés, qu'au niveau central avec les aires recevant les projections des nocicepteurs lésés ou non-lésés, l'analyse du transcriptome montre des différences de profil d'expression. En effet, nous avons constaté des changements transcriptionnels importants dans les nocicepteurs lésés (1561 gènes, > 1.5x et pairwise comparaison > 77%) ainsi que dans les laminae correspondantes (618 gènes), alors que ces modifications transcriptionelles sont mineures au niveau des nocicepteurs non-lésés (60 gènes), mais important dans leurs laminae de projection (459 gènes). Au niveau des nocicepteurs, en utilisant la classification par groupes fonctionnels (Gene Ontology), nous avons observé que plusieurs processus biologiques sont modifiés. Ainsi des fonctions telles que la traduction des signaux cellulaires, l'organisation du cytosquelette ainsi que les mécanismes de réponse au stress sont affectés. Par contre dans les neurones non-lésés seuls les processus biologiques liés au métabolisme et au développement sont modifiés. Au niveau de la corne dorsale de la moelle, nous avons observé des modifications importantes des processus immuno-inflammatoires dans l'aire affectée par les nerfs lésés et des changements associés à l'organisation et la transmission synaptique au niveau de l'aire des nerfs non-lésés. L'analyse approfondie des canaux sodiques a démontré plusieurs changements d'expression, principalement dans les neurones lésés. Les analyses fonctionnelles n'indiquent aucune différence entre les densités de courant tétrodotoxine-sensible (TTX-S) dans les neurones lésés et non-lésés même si les niveaux d'expression des ARNm des sous-unités TTX-S sont modifiés dans les neurones lésés. L'inactivation basale dépendante du voltage des canaux tétrodotoxine-insensible (TTX-R) est déplacée vers des potentiels positifs dans les cellules lésées et non-lésées. En revanche la vitesse de récupération des courants TTX-S et TTX-R après inactivation est accélérée dans les neurones lésés. Ces changements pourraient être à l'origine de l'altération de l'activité électrique des neurones sensoriels dans le contexte des douleurs neuropathiques. En résumé, ces résultats suggèrent l'existence de mécanismes différenciés affectant les neurones lésés et les neurones adjacents non-lésés lors de la mise en place la douleur neuropathique. De plus, les changements centraux au niveau de la moelle épinière qui surviennent après lésion sont probablement intégrés différemment selon la perception de signaux des neurones périphériques lésés ou non-lésés. En conclusion, ces modulations complexes et distinctes sont probablement des acteurs essentiels impliqués dans la genèse et la persistance des douleurs neuropathiques. ABSTRACT : Neuropathic pain (NP) results from damage or dysfunction of the peripheral or central nervous system. Symptoms associated with NP are severe and difficult to treat. Targeting NP mechanisms and their translation into symptoms may offer a better therapeutic approach.Hyperexcitability of the peripheral and central nervous system occurs in the dorsal root ganglia (DRG) and the dorsal horn (DH) of the spinal cord. We aimed to identify transcriptional variations in injured and in adjacent non-injured nociceptors as well as in corresponding laminae I and II of DH receiving their inputs.We investigated changes one week after the injury induced by the spared nerve injury model of NP. We employed the laser capture microdissection (LCM) for the procurement of specific cell-types (enrichment in nociceptors of injured/non-injured neurons) and laminae in combination with transcriptional analysis by microarray. In addition, we studied functionál properties and currents of sodium channels (Nav1s) in injured and neighboring non-injured DRG neurons.Microarray analysis at the periphery between injured and non-injured DRG neurons and centrally between the area of central projections from injured and non-injured neurons show significant and differential expression patterns. We reported changes in injured nociceptors (1561 genes, > 1.5 fold, >77% pairwise comparison) and in corresponding DH laminae (618 genes), while less modifications occurred in non-injured nociceptors (60 genes) and in corresponding DH laminae (459 genes). At the periphery, we observed by Gene Ontology the involvement of multiple biological processes in injured neurons such as signal transduction, cytoskeleton organization or stress responses. On contrast, functional overrepresentations in non-injured neurons were noted only in metabolic or developmentally related mechanisms. At the level of superficial laminae of the dorsal horn, we reported changes of immune and inflammatory processes in injured-related DH and changes associated with synaptic organization and transmission in DH corresponding to non-injured neurons. Further transcriptional analysis of Nav1s indicated several changes in injured neurons. Functional analyses of Nav1s have established no difference in tetrodotoxin-sensitive (TTX-S) current densities in both injured and non-injured neurons, despite changes in TTX-S Nav1s subunit mRNA levels. The tetrodotoxin-resistant (TTX-R) voltage dependence of steady state inactivation was shifted to more positive potentials in both injured and non-injured neurons, and the rate of recovery from inactivation of TTX-S and TTX-R currents was accelerated in injured neurons. These changes may lead to alterations in neuronal electrogenesis. Taken together, these findings suggest different mechanisms occurring in the injured neurons and the adjacent non-injured ones. Moreover, central changes after injury are probably driven in a different manner if they receive inputs from injured or non-injured neurons. Together, these distinct and complex modulations may contribute to NP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NLRP3 inflammasome acts as a danger signal sensor that triggers and coordinates the inflammatory response upon infectious insults or tissue injury and damage. However, the role of the NLRP3 inflammasome in natural killer (NK) cell-mediated control of tumor immunity is poorly understood. Here, we show in a model of chemical-induced carcinogenesis and a series of experimental and spontaneous metastases models that mice lacking NLRP3 display significantly reduced tumor burden than control wild-type (WT) mice. The suppression of spontaneous and experimental tumor metastases and methylcholanthrene (MCA)-induced sarcomas in mice deficient for NLRP3 was NK cell and IFN-γ-dependent. Focusing on the amenable B16F10 experimental lung metastases model, we determined that expression of NLRP3 in bone marrow-derived cells was necessary for optimal tumor metastasis. Tumor-driven expansion of CD11b(+)Gr-1(intermediate) (Gr-1(int)) myeloid cells within the lung tumor microenvironment of NLRP3(-/-) mice was coincident with increased lung infiltrating activated NK cells and an enhanced antimetastatic response. The CD11b(+)Gr-1(int) myeloid cells displayed a unique cell surface phenotype and were characterized by their elevated production of CCL5 and CXCL9 chemokines. Adoptive transfer of this population into WT mice enhanced NK cell numbers in, and suppression of, B16F10 lung metastases. Together, these data suggested that NLRP3 is an important suppressor of NK cell-mediated control of carcinogenesis and metastases and identify CD11b(+)Gr-1(int) myeloid cells that promote NK cell antimetastatic function. Cancer Res; 72(22); 5721-32. ©2012 AACR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To weight the rod-, cone-, and melanopsin-mediated activation of the retinal ganglion cells, which drive the pupil light reflex by varying the light stimulus wavelength, intensity, and duration. DESIGN: Experimental study. PARTICIPANTS: Forty-three subjects with normal eyes and 3 patients with neuroretinal visual loss. METHODS: A novel stimulus paradigm was developed using either a long wavelength (red) or short wavelength (blue) light given as a continuous Ganzfeld stimulus with stepwise increases over a 2 log-unit range. The pupillary movement before, during, and after the light stimulus was recorded in real time with an infrared illuminated video camera. MAIN OUTCOME MEASURES: The percent pupil contraction of the transient and sustained pupil response to a low- (1 cd/m(2)), medium- (10 cd/m(2)), and high-intensity (100 cd/m(2)) red- and blue-light stimulus was calculated for 1 eye of each subject. From the 43 normal eyes, median and 25th, 75th, 5th, and 95th percentile values were obtained for each stimulus condition. RESULTS: In normal eyes at lower intensities, blue light evoked much greater pupil responses compared with red light when matched for photopic luminance. The transient pupil contraction was generally greater than the sustained contraction, and this disparity was greatest at the lowest light intensity and least apparent with bright (100 cd/m(2)) blue light. A patient with primarily rod dysfunction (nonrecordable scotopic electroretinogram) showed significantly reduced pupil responses to blue light at lower intensities. A patient with achromatopsia and an almost normal visual field showed selective reduction of the pupil response to red-light stimulation. A patient with ganglion cell dysfunction owing to anterior ischemic optic neuropathy demonstrated global loss of pupil responses to red and blue light in the affected eye. CONCLUSIONS: Pupil responses that differ as a function of light intensity and wavelength support the hypothesis that selected stimulus conditions can produce pupil responses that reflect phototransduction primarily mediated by rods, cones, or melanopsin. Use of chromatic pupil responses may be a novel way to diagnose and monitor diseases affecting either the outer or inner retina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Memory responses require immune competence. We assessed the influence of priming with AS03-adjuvanted pandemic vaccine (Pandemrix®) on memory responses of HIV patients, kidney recipients (SOT) and healthy controls (HC). METHOD: Participants (HIV: 197, SOT: 53; HC: 156) were enrolled in a prospective study and 390/406 (96%) completed it. All had been primed in 2009/2010 with 1 (HC) or 2 (patients) doses of Pandemrix®, and were boosted with the 2010/2011 seasonal influenza vaccine. Geometric mean titres and seroprotection rates were measured 12 months after priming and 4 weeks after boosting. Primary and memory responses were directly compared in 191 participants (HCW: 69, HIV: 71, SOT: 51) followed during 2 consecutive seasons. RESULTS: Most participants (HC: 77.8%, HIV: 77.6%, SOT: 66%) remained seroprotected at 12 months post-priming. Persisting A/09/H1N1 titers were high in HIV (100.2) and HC (120.1), but lower in SOT (61.4) patients. Memory responses reached higher titers in HIV (507.8) than in HC (253.5) and SOT (136.9) patients. Increasing age and lack of HAART reduced persisting and memory responses, mainly influenced by residual antibody titers. Comparing 2009/2010 and 2010/2011 titers in 191 participants followed for 2 seasons indicated lower post-2010/2011 titers in HC (240.2 vs 313.9), but higher titers in HIV (435.7 vs 338.0) and SOT (136 vs 90.3) patients. CONCLUSIONS: Priming with 2 doses of Pandemrix® elicited persistent antibody responses and even stronger memory responses to non-adjuvanted seasonal vaccine in HIV patients than 1 dose in healthy subjects. Adjuvanted influenza vaccines may improve memory responses of immunocompromised patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT01022905.