214 resultados para DENDRITIC BRANCHING FEATURES
Resumo:
Animal dispersal in a fragmented landscape depends on the complex interaction between landscape structure and animal behavior. To better understand how individuals disperse, it is important to explicitly represent the properties of organisms and the landscape in which they move. A common approach to modelling dispersal includes representing the landscape as a grid of equal sized cells and then simulating individual movement as a correlated random walk. This approach uses a priori scale of resolution, which limits the representation of all landscape features and how different dispersal abilities are modelled. We develop a vector-based landscape model coupled with an object-oriented model for animal dispersal. In this spatially explicit dispersal model, landscape features are defined based on their geographic and thematic properties and dispersal is modelled through consideration of an organism's behavior, movement rules and searching strategies (such as visual cues). We present the model's underlying concepts, its ability to adequately represent landscape features and provide simulation of dispersal according to different dispersal abilities. We demonstrate the potential of the model by simulating two virtual species in a real Swiss landscape. This illustrates the model's ability to simulate complex dispersal processes and provides information about dispersal such as colonization probability and spatial distribution of the organism's path.
Resumo:
Dendritic growth is essential for the establishment of a functional nervous system. Among extrinsic signals that control dendritic development, substantial evidence indicates that BDNF regulates dendritic morphology. However, little is known about the underlying mechanisms by which BDNF controls dendritic growth. In this study, we show that the MAPK signaling pathway and the transcription factor cAMP response element-binding protein (CREB) mediate the effects of BDNF on dendritic length and complexity. However, phosphorylation of CREB alone is not sufficient for the stimulation of dendritic growth by BDNF. Thus, using a mutant form of CREB unable to bind CREB-regulated transcription coactivator (CRTC1), we demonstrate that this effect also requires a functional interaction between CREB and CRTC1. Moreover, inhibition of CRTC1 expression by shRNA-mediated knockdown abolished BDNF-induced dendritic growth of cortical neurons. Interestingly, we found that nuclear translocation of CRTC1 results from activation of NMDA receptors by glutamate, a process that is essential for the effects of BDNF on dendritic development. Together, these data identify a previously unrecognized mechanism by which CREB and the coactivator CRTC1 mediate the effects of BDNF on dendritic growth.
Resumo:
It is within the T cell rich zone of secondary lymphoid organs (SLO) that dendritic cells (DC) present the captured pathogens to recirculating T cells in order to activate the rare antigen-specific T cells. While we have made considerable progress in understanding the biology of mobile hematopoietic cells found within SLO, notably DC and lymphocytes, we still have a lot to learn about the sessile stromal cells. This review is focused on the recent progress made in our understanding of the fibroblastic reticular stromal cells that form the 'niches' within the T zone.
Resumo:
To test hypotheses about the universality of personality traits, college students in 50 cultures identified an adult or college-aged man or woman whom they knew well and rated the 11,985 targets using the 3rd-person version of the Revised NEO Personality Inventory. Factor analyses within cultures showed that the normative American self-report structure was clearly replicated in most cultures and was recognizable in all. Sex differences replicated earlier self-report results, with the most pronounced differences in Western cultures. Cross-sectional age differences for 3 factors followed the pattern identified in self-reports, with moderate rates of change during college age and slower changes after age 40. With a few exceptions, these data support the hypothesis that features of personality traits are common to all human groups.
Resumo:
Leishmania major infection induces self-healing cutaneous lesions in C57BL/6 mice. Both IL-12 and IFN-γ are essential for the control of infection. We infected Jun dimerization protein p21SNFT (Batf3(-/-) ) mice (C57BL/6 background) that lack the major IL-12 producing and cross-presenting CD8α(+) and CD103(+) DC subsets. Batf3(-/-) mice displayed enhanced susceptibility with larger lesions and higher parasite burden. Additionally, cells from draining lymph nodes of infected Batf3(-/-) mice secreted less IFN-γ, but more Th2- and Th17-type cytokines, mirrored by increased serum IgE and Leishmania-specific immunoglobulin 1 (Th2 indicating). Importantly, CD8α(+) DCs isolated from lymph nodes of L. major-infected mice induced significantly more IFN-γ secretion by L. major-stimulated immune T cells than CD103(+) DCs. We next developed CD11c-diptheria toxin receptor: Batf3(-/-) mixed bone marrow chimeras to determine when the DCs are important for the control of infection. Mice depleted of Batf-3-dependent DCs from day 17 or wild-type mice depleted of cross-presenting DCs from 17-19 days after infection maintained significantly larger lesions similar to mice whose Batf-3-dependent DCs were depleted from the onset of infection. Thus, we have identified a crucial role for Batf-3-dependent DCs in protection against L. major.
Resumo:
Mesenteric vein thrombosis (MVT) accounts for 5%-15% of all mesenteric ischemic events and is classified as either primary or secondary. Primary MVT is idiopathic, whereas secondary MVT can result from a variety of underlying diseases and risk factors, including primary hypercoagulable states or prothrombotic disorders, myeloproliferative neoplasms, cancer (most frequently of the pancreas or liver), diverse inflammatory conditions, recent surgery, portal hypertension, and miscellaneous causes such as oral contraceptives or pregnancy. Clinical symptoms of MVT are rather nonspecific and are mainly characterized by abdominal pain. The mortality rate for MVT remains high, since even now the diagnosis is often delayed. Multidetector computed tomography (CT) is the modality of choice in this context. Although venous bowel ischemia occurs only infrequently with MVT, radiologists should be familiar with its multidetector CT features. Familiarity with the possible causes of MVT, the underlying pathogenic mechanisms associated with MVT, and the correlation between multidetector CT features and these pathogenic mechanisms is necessary to optimize medical management and improve patient care. © RSNA, 2012.
Resumo:
The developmental origin of dendritic cells (DCs) is controversial. In the mouse CD8alpha(+) and CD8alpha(-) DC subsets are often considered to be of lymphoid and myeloid origin respectively, although evidence on this point is conflicting. Very recently a novel CD11c(+) B220(+) DC subset has been identified that appears to be the murine counterpart to interferon alpha (IFNalpha)-producing human plasmacytoid DCs (PDCs). We show here that CD11c(+) B220(+) mouse PDCs, like human PDCs, are present in the thymus and express T lineage markers such as CD8alpha and CD4. However, the intrathymic development of PDCs can be completely dissociated from immature T lineage cells in mixed chimeras established with bone marrow cells from mice deficient for either Notch-1 or T-cell factor 1, two independent mutations that severely block early T-cell development. Our data indicate that thymic PDCs do not arise from a bipotential T/DC precursor.
Resumo:
Peripheral T-cell lymphoma, not otherwise specified is a heterogeneous group of aggressive neoplasms with indistinct borders. By gene expression profiling we previously reported unsupervised clusters of peripheral T-cell lymphomas, not otherwise specified correlating with CD30 expression. In this work we extended the analysis of peripheral T-cell lymphoma molecular profiles to prototypical CD30(+) peripheral T-cell lymphomas (anaplastic large cell lymphomas), and validated mRNA expression profiles at the protein level. Existing transcriptomic datasets from peripheral T-cell lymphomas, not otherwise specified and anaplastic large cell lymphomas were reanalyzed. Twenty-one markers were selected for immunohistochemical validation on 80 peripheral T-cell lymphoma samples (not otherwise specified, CD30(+) and CD30(-); anaplastic large cell lymphomas, ALK(+) and ALK(-)), and differences between subgroups were assessed. Clinical follow-up was recorded. Compared to CD30(-) tumors, CD30(+) peripheral T-cell lymphomas, not otherwise specified were significantly enriched in ALK(-) anaplastic large cell lymphoma-related genes. By immunohistochemistry, CD30(+) peripheral T-cell lymphomas, not otherwise specified differed significantly from CD30(-) samples [down-regulated expression of T-cell receptor-associated proximal tyrosine kinases (Lck, Fyn, Itk) and of proteins involved in T-cell differentiation/activation (CD69, ICOS, CD52, NFATc2); upregulation of JunB and MUM1], while overlapping with anaplastic large cell lymphomas. CD30(-) peripheral T-cell lymphomas, not otherwise specified tended to have an inferior clinical outcome compared to the CD30(+) subgroups. In conclusion, we show molecular and phenotypic features common to CD30(+) peripheral T-cell lymphomas, and significant differences between CD30(-) and CD30(+) peripheral T-cell lymphomas, not otherwise specified, suggesting that CD30 expression might delineate two biologically distinct subgroups.
Resumo:
Previous studies showed a fetal sheep liver extract (FSLE), in association with monophosphoryl lipid A, MPLA (a bioactive component of lipid A of LPS), could interact to induce the development of dendritic cells (DCs) which regulated production of Foxp3+ Treg. This interaction was associated with an altered gene expression both of distinct subsets of TLRs and of CD200Rs. Prior studies had suggested that major interacting components within FSLE were gamma-chain of fetal hemoglobin (Hgbgamma) and glutathione (GSH). We investigated whether differentiation/maturation of DCs in vitro in the presence of either GM-CSF or Flt3L to produce preferentially either immunogenic or tolerogenic DCs was itself controlled by an interaction between MPLA, GSH and Hgbgamma. At low (approximately 10 microg/ml) Hgbgamma concentrations, DCs developing in culture with GSH and MPLA produced optimal stimulation of allogeneic CTL cell responses in vitro (and enhanced skin graft rejection in vivo). At higher concentrations (>40 microg/ml Hgbgamma) and equivalent concentrations of MPLA and GSH, the DCs induce populations of Treg which can suppress the induction of allogeneic CTL and graft rejection in vivo. These different populations of DCs express different patterns of mRNAs for the CD200R family. Addition of anti-TLR or anti-MD-1 mAbs to DCs developing in this mixture (Hgbgamma+GSH+MPLA), suggests that one effect of (GSH+Hgbgamma) on MPLA stimulation may involve altered signaling through TLR4.
Resumo:
In 2004, a 56-year-old woman was diagnosed with Stage IA follicular lymphoma in a cervical lymph node biopsy. The patient experienced total remission after local radiation therapy. In 2009, a control computed tomography scan evidenced a pelvic mass, prompting total hysterectomy. The latter harbored a 4.8-cm intramural uterine tumor corresponding to a mostly diffuse and focally nodular proliferation of medium to large cells, with extensive, periodic acid-Schiff negative, signet ring cell changes, and a pan-keratin negative, CD20+, CD10+, Bcl2+, Bcl6+ immunophenotype. Molecular genetic studies showed the same clonal IGH gene rearrangement in the lymph node and the uterus, establishing the uterine tumor as a relapse of the preceding follicular lymphoma, although no signet ring cells were evidenced at presentation. Uterine localization of lymphomas is rare, and lymphomas with signet ring cell features are uncommon. This exceptional case exemplifies a diagnostically challenging situation and expands the differential diagnosis of uterine neoplasms displaying signet ring cell morphology.
Resumo:
Efficient vaccination against infectious agents and tumors depends on specific antigen targeting to dendritic cells (DCs). We report here that biosafe coronavirus-based vaccine vectors facilitate delivery of multiple antigens and immunostimulatory cytokines to professional antigen-presenting cells in vitro and in vivo. Vaccine vectors based on heavily attenuated murine coronavirus genomes were generated to express epitopes from the lymphocytic choriomeningitis virus glycoprotein, or human Melan-A, in combination with the immunostimulatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). These vectors selectively targeted DCs in vitro and in vivo resulting in vector-mediated antigen expression and efficient maturation of DCs. Single application of only low vector doses elicited strong and long-lasting cytotoxic T-cell responses, providing protective antiviral and antitumor immunity. Furthermore, human DCs transduced with Melan-A-recombinant human coronavirus 229E efficiently activated tumor-specific CD8(+) T cells. Taken together, this novel vaccine platform is well suited to deliver antigens and immunostimulatory cytokines to DCs and to initiate and maintain protective immunity.
Resumo:
Plasmacytoid dendritic cells (pDCs) are specialized sensors of viral nucleic acids that initiate protective immunity through the production of type I interferons (IFNs). Normally, pDCs fail to sense host-derived self-nucleic acids but do so when self-nucleic acids form complexes with endogenous antimicrobial peptides produced in damaged skin. Whereas regulated expression of antimicrobial peptides may lead to pDC activation and protective immune responses to skin injury, overexpression of antimicrobial peptides in psoriasis drives excessive sensing of self-nucleic acids by pDCs resulting in IFN-driven autoimmunity. In skin tumors, pDCs are unable to sense self-nucleic acids; however, therapeutic activation of pDCs by synthetic nucleic acids or analogues can be exploited to generate antitumor immunity.
Resumo:
OBJECTIVES: Studies of cognition in bipolar disorder (BD) have reported impairments in processing speed, working memory, episodic memory, and executive function, but they have primarily focused on young and middle-aged adults. In such studies, the severity of cognitive deficits increases with the duration of illness. Therefore, one would expect more pronounced deficits in patients with longstanding BD. The first aim of the present study was to determine the pattern and the magnitude of cognitive impairment in older euthymic BD patients. The second aim was to explore the interrelationship between these cognitive deficits and determine whether they reflect a single core impairment or the co-occurrence of independent cognitive deficits. METHODS: Twenty-two euthymic elderly BD patients and 22 controls, matched for gender, age, and education, underwent a comprehensive neuropsychological assessment. RESULTS: Compared to controls, BD patients had significantly reduced performance in processing speed, working memory, verbal fluency, and episodic memory, but not in executive function. Hierarchical regression analyses showed that verbal fluency and working memory impairments were fully mediated by changes in processing speed. This was not the case for the episodic memory dysfunction. CONCLUSION: The cognitive profile in older euthymic BD cases is similar to the one described in younger BD cohorts. Our results further suggest that impaired processing speed plays a major role in the cognitive changes observed in BD patients except for deficits in episodic memory, thus providing strong evidence that processing speed and episodic memory are two core deficits in elderly BD patients.