300 resultados para Crk-Associated Substrate Protein


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for a ntiviral intervention but also a key player i n the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity (MAVS and TRIF) as well as a phosphatase involved in growth factor signaling (TCPTP). T he aim of this study was to identify novel cellular substrates o f the N S3-4A protease and to investigate their role in the replication and pathogenesis of HCV. Methods: Cell lines inducibly expressing t he NS3-4A protease were analyzed in basal as well as interferon-α-stimulated states by stable isotopic l abeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. Candidates fulfilling stringent criteria for potential substrates or products of the NS3-4A protease were further i nvestigated in different experimental systems as well a s in liver biopsies from patients with chronic hepatitis C. Results: SILAC coupled with protein separation and mass spectrometry yielded > 5000 proteins of which 18 candidates were selected for further analyses. These allowed us to identify GPx8, a membrane-associated peroxidase involved in disulfide bond formation in the endoplasmic reticulum, as a n ovel cellular substrate of the H CV NS3-4A protease. Cleavage occurs at cysteine in position 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic hepatitis C. Further functional studies, involving overexpression and RNA silencing, revealed that GPx8 is a p roviral factor involved in viral particle production but not in HCV entry or HCV RNA replication. Conclusions: GPx8 is a proviral host factor cleaved by the HCV NS3-4A protease. Studies investigating the consequences of GPx8 cleavage for protein function are underway. The identification of novel cellular substrates o f the HCV N S3-4A protease should yield new insights i nto the HCV life cycle and the pathogenesis of hepatitis C and may reveal novel targets for antiviral intervention.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proteins secreted from adipose tissue are increasingly recognized to play an important role in the regulation of glucose metabolism. However, much less is known about their effect on lipid metabolism. The fasting-induced adipose factor (FIAF/angiopoietin-like protein 4/peroxisome proliferator-activated receptor gamma angiopoietin-related protein) was previously identified as a target of hypolipidemic fibrate drugs and insulin-sensitizing thiazolidinediones. Using transgenic mice that mildly overexpress FIAF in peripheral tissues we show that FIAF is an extremely powerful regulator of lipid metabolism and adiposity. FIAF overexpression caused a 50% reduction in adipose tissue weight, partly by stimulating fatty acid oxidation and uncoupling in fat. In addition, FIAF overexpression increased plasma levels of triglycerides, free fatty acids, glycerol, total cholesterol, and high density lipoprotein (HDL)-cholesterol. Functional tests indicated that FIAF overexpression severely impaired plasma triglyceride clearance but had no effect on very low density lipoprotein production. The effects of FIAF overexpression were amplified by a high fat diet, resulting in markedly elevated plasma and liver triglycerides, plasma free fatty acids, and plasma glycerol levels, and impaired glucose tolerance in FIAF transgenic mice fed a high fat diet. Remarkably, in mice the full-length form of FIAF was physically associated with HDL, whereas truncated FIAF was associated with low density lipoprotein. In human both full-length and truncated FIAF were associated with HDL. The composite data suggest that via physical association with plasma lipoproteins, FIAF acts as a powerful signal from fat and other tissues to prevent fat storage and stimulate fat mobilization. Our data indicate that disturbances in FIAF signaling might be involved in dyslipidemia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Disturbances of the cholesterol metabolism are associated with Alzheimer's disease (AD) risk and related cerebral pathology. Experimental studies found changing levels of cholesterol and its metabolites 24S-hydroxycholesterol (24S-OHC) and 27-hydroxycholesterol (27-OHC) to contribute to amyloidogenesis by increasing the production of soluble amyloid precursor protein (sAPP). The aim of this study was to evaluate the relationship between the CSF and circulating cholesterol 24S-OHC and 27-OHC, and the sAPP production as measured by CSF concentrations of sAPP forms in humans. The plasma and the CSF concentrations of cholesterol, 24S-OHC and 27-OHC, and the CSF concentrations of sAPPα, sAPPβ, and Aß1-42 were assessed in subjects with AD and controls with normal cognition. In multivariate regression tests including age, gender, albumin ratio, and apolipoprotein E (APOE)ε4 status CSF cholesterol, 24S-OHC, and 27-OHC independently predicted the concentrations of sAPPα and sAPPβ. The associations remained significant when analyses were separately performed in the AD group. Furthermore, plasma 27-OHC concentrations were associated with the CSF sAPP levels. The results suggest that high CSF concentrations of cholesterol, 24S-OHC, and 27-OHC are associated with increased production of both sAPP forms in AD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microtubule-associated protein 1B, MAP1B, is a major cytoskeletal protein during brain development and one of the largest brain MAPs associated with microtubules and microfilaments. Here, we identified several proteins that bind to MAP1B via immunoprecipitation with a MAP1B-specific antibody, by one and two-dimensional gel electrophoresis and subsequent mass spectrometry identification of precipitated proteins. In addition to tubulin and actin, a variety of proteins were identified. Among these proteins were glyceraldehyde-3-phosphate dehydrogenase (GAPDH), heat shock protein 8, dihydropyrimidinase related proteins 2 and 3, protein-L-isoaspartate O-methyltransferase, beta-spectrin, and clathrin protein MKIAA0034, linking either directly or indirectly to MAP1B. In particular, GAPDH, a key glycolytic enzyme, was bound in large quantity to the heavy chain of MAP1B in adult brain tissue. In vitro binding studies confirmed a direct binding of GAPDH to MAP1B. In PC12 cells, GAPDH was found in cytoplasm and nuclei and partially co-localized with MAP1B. It disappeared from the cytoplasm under oxidative stress or after a disruption of cytoskeletal elements after colcemid or cytochalasin exposure. GAPDH may be essential in the local energy provision of cytoskeletal structures and MAP1B may help to keep this key enzyme close to the cytoskeleton.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We purified from activated T lymphocytes a novel, highly conserved, 116-kDa, intracellular protein that occurred at high levels in the large, dividing cells of the thymus, was up-regulated when resting T or B lymphocytes or hemopoietic progenitors were activated, and was down-regulated when a monocytic leukemia, M1, was induced to differentiate. Expression of the protein was highest in the thymus and spleen and lowest in tissues with a low proportion of dividing cells such as kidney or muscle, although expression was high in the brain. The protein was localized to the cytosol and was phosphorylated, which is consistent with a previous report that the Xenopus laevis ortholog was phosphorylated by a mitotically activated kinase (1 ). The cDNA was previously mischaracterized as encoding p137, a 137-kDa GPI-linked membrane protein (2 ). We propose that the authentic protein encoded by this cDNA be called cytoplasmic activation/proliferation-associated protein-1 (caprin-1), and show that it is the prototype of a novel family of proteins characterized by two novel protein domains, termed homology regions-1 and -2 (HR-1, HR-2). Although we have found evidence for caprins only in urochordates and vertebrates, two insect proteins exhibit well-conserved HR-1 domains. The HR-1 and HR-2 domains have no known function, although the HR-1 of caprin-1 appeared necessary for formation of multimeric complexes of caprin-1. Overexpression of a fusion protein of enhanced green fluorescent protein and caprin-1 induced a specific, dose-dependent suppression of the proliferation of NIH-3T3 cells, consistent with the notion that caprin-1 plays a role in cellular activation or proliferation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: Vaccination with full-length human tumor antigens aims at inducing or increasing antitumor immune responses, including CD8 CTL in cancer patients across the HLA barrier. We have recently reported that vaccination with a recombinant tumor-specific NY-ESO-1 (ESO) protein, administered with Montanide and CpG resulted in the induction of specific integrated antibody and CD4 T cell responses in all vaccinated patients examined, and significant CTL responses in half of them. Vaccine-induced CTL mostly recognized a single immunodominant region (ESO 81-110). The purpose of the present study was to identify genetic factor(s) distinguishing CTL responders from nonresponders. EXPERIMENTAL DESIGN: We determined the HLA class I alleles expressed by CTL responders and nonresponders using high-resolution molecular typing. Using short overlapping peptides spanning the ESO immunodominant CTL region and HLA class I/ESO peptide tetramers, we determined the epitopes recognized by the majority of vaccine-induced CTL. RESULTS: CTL induced by vaccination with ESO protein mostly recognized distinct but closely overlapping epitopes restricted by a few frequently expressed HLA-B35 and HLA-Cw3 alleles. All CTL responders expressed at least one of the identified alleles, whereas none of the nonresponders expressed them. CONCLUSIONS: Expression of HLA-B35 and HLA-Cw3 is associated with the induction of immunodominant CTL responses following vaccination with recombinant ESO protein. Because recombinant tumor-specific proteins are presently among the most promising candidate anticancer vaccines, our findings indicate that the monitoring of cancer vaccine trials should systematically include the assessment of HLA association with responsiveness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The expression of microtubule-associated protein 1a (MAP1a) in the developing rat spinal cord was studied using the monoclonal antibody BW6. Immunoblots of microtubule preparations revealed the presence of MAP1a in spinal cord tissue of rats aged embryonal day 16 and postnatal day 0. The spinal cord matrix layer, between embryonal days 12-17, displayed a pattern of MAP1a-positive processes, horizontally oriented in between the membrane limitans interna and externa. The mantle layer stained intensely for MAP1a between embryonal day 12 and postnatal day 2. MAP1a was found in neuronal cell bodies, axons and dendrites, located mainly in the ventral and intermediate mantle layer. In the marginal layer, MAP1a-positive axons could be observed between embryonal days 14-18. During further development, the intensity of the MAP1a staining in the spinal columns gradually decreased. These expression patterns indicate an involvement of MAP1a in the proliferation and differentiation of neuroblasts, and the maturation of the long spinal fiber systems, i.e. early events in spinal cord development

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: GNbAC1 is an immunoglobulin (IgG4) humanised monoclonal antibody against multiple sclerosis-associated retrovirus (MSRV)-Env, a protein of endogenous retroviral origin, expressed in multiple sclerosis (MS) lesions, which is pro-inflammatory and inhibits oligodendrocyte precursor cell differentiation. OBJECTIVE: This is a randomised, double-blind placebo-controlled dose-escalation study followed by a six-month open-label phase to test GNbAC1 in MS patients. The primary objective was to assess GNbAC1 safety in MS patients, and the other objectives were pharmacokinetic and pharmacodynamic assessments. METHODS: Ten MS patients were randomised into two cohorts to receive a single intravenous infusion of GNbAC1/placebo at doses of 2 or 6 mg/kg. Then all patients received five infusions of GNbAC1 at 2 or 6 mg/kg at four-week intervals in an open-label setting. Safety, brain magnetic resonance imaging (MRI), pharmacokinetics, immunogenicity, cytokines and MSRV RNA expression were studied. RESULTS: All patients completed the study. GNbAC1 was well tolerated in all patients. GNbAC1 pharmacokinetics is dose-linear with mean elimination half-life of 27-37 d. Anti-GNbAC1 antibodies were not detected. Cytokine analysis did not indicate an adverse effect. MSRV-transcripts showed a decline after the start of treatment. Nine patients had stable brain lesions at MRI. CONCLUSION: The safety, pharmacokinetic profile, and pharmacodynamic responses to GNbAC1 are favourable in MS patients over a six-month treatment period.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: Renal resistive index (RRI) varies directly with renal vascular stiffness and pulse pressure. RRI correlates positively with arteriolosclerosis in damaged kidneys and predicts progressive renal dysfunction. Matrix Gla-protein (MGP) is a vascular calcification inhibitor that needs vitamin K to be activated. Inactive MGP, known as desphospho-uncarboxylated MGP (dp-ucMGP), can be measured in plasma and has been associated with various cardiovascular (CV) markers, CV outcomes and mortality. In this study we hypothesize that increased RRI is associated with high levels of dp-ucMGP. DESIGN AND METHOD: We recruited participants via a multi-center family-based cross-sectional study in Switzerland exploring the role of genes and kidney hemodynamics in blood pressure regulation. Dp-ucMGP was quantified in plasma samples by sandwich ELISA. Renal doppler sonography was performed using a standardized protocol to measure RRIs on 3 segmental arteries in each kidney. The mean of the 6 measures was reported. Multiple regression analysis was performed to estimate associations between RRI and dp-ucMGP adjusting for sex, age, pulse pressure, mean pressure, renal function and other CV risk factors. RESULTS: We included 1035 participants in our analyses. Mean values were 0.64 ± 0.06 for RRI and 0.44 ± 0.21 (nmol/L) for dp-ucMGP. RRI was positively associated with dp-ucMGP both before and after adjustment for sex, age, body mass index, pulse pressure, mean pressure, heart rate, renal function, low and high density lipoprotein, smoking status, diabetes, blood pressure and cholesterol lowering drugs, and history of CV disease (P < 0.001). CONCLUSIONS: RRI is independently and positively associated with high levels of dp-ucMGP after adjustment for pulse pressure and common CV risk factors. Further studies are needed to determine if vitamin K supplementation can have a positive effect on renal vascular stiffness and kidney function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increased pulse wave velocity (PWV) is a marker of aortic stiffness and an independent predictor of mortality. Matrix Gla-protein (MGP) is a vascular calcification inhibitor that needs vitamin K to be activated. Inactive MGP, known as desphospho-uncarboxylated MGP (dp-ucMGP), can be measured in plasma and has been associated with various cardiovascular markers, cardiovascular outcomes, and mortality. In this study, we hypothesized that high levels of dp-ucMGP are associated with increased PWV. We recruited participants via a multicenter family-based cross-sectional study in Switzerland. Dp-ucMGP was quantified in plasma by sandwich ELISA. Aortic PWV was determined by applanation tonometry using carotid and femoral pulse waveforms. Multiple regression analysis was performed to estimate associations between PWV and dp-ucMGP adjusting for age, renal function, and other cardiovascular risk factors. We included 1001 participants in our analyses (475 men and 526 women). Mean values were 7.87±2.10 m/s for PWV and 0.43±0.20 nmol/L for dp-ucMGP. PWV was positively associated with dp-ucMGP both before and after adjustment for sex, age, body mass index, height, systolic and diastolic blood pressure (BP), heart rate, renal function, low- and high-density lipoprotein, glucose, smoking status, diabetes mellitus, BP and cholesterol lowering drugs, and history of cardiovascular disease (P≤0.01). In conclusion, high levels of dp-ucMGP are independently and positively associated with arterial stiffness after adjustment for common cardiovascular risk factors, renal function, and age. Experimental studies are needed to determine whether vitamin K supplementation slows arterial stiffening by increasing MGP carboxylation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

GNbAC1 is a humanized monoclonal antibody targeting MSRV-Env, an endogenous retroviral protein, which is expressed in multiple sclerosis (MS) lesions, is pro-inflammatory and inhibits oligodendrocyte precursor cell differentiation. This paper describes the open-label extension up to 12months of a trial testing GNbAC1 in 10 MS patients at 2 and 6mg/kg. The primary objective was to assess GNbAC1 safety, and other objectives were pharmacokinetic and pharmacodynamic assessments. During the extended study, no safety issues occurred in the 8 remaining patients. No anti-GNbAC1 antibodies were detected. GNbAC1 appears well tolerated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural microtubule associated proteins (MAPs) stabilize microtubules, a property that was thought to be essential for development, maintenance and function of neuronal circuits. However, deletion of the structural MAPs in mice does not lead to major neurodevelopment defects. Here we demonstrate a role for MAP6 in brain wiring that is independent of microtubule binding. We find that MAP6 deletion disrupts brain connectivity and is associated with a lack of post-commissural fornix fibres. MAP6 contributes to fornix development by regulating axonal elongation induced by Semaphorin 3E. We show that MAP6 acts downstream of receptor activation through a mechanism that requires a proline-rich domain distinct from its microtubule-stabilizing domains. We also show that MAP6 directly binds to SH3 domain proteins known to be involved in neurite extension and semaphorin function. We conclude that MAP6 is critical to interface guidance molecules with intracellular signalling effectors during the development of cerebral axon tracts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Podocytes are essential for the function of the kidney glomerular filter. A highly differentiated cytoskeleton is requisite for their integrity. Although much knowledge has been gained on the organization of cortical actin networks in podocyte's foot processes, less is known about the molecular organization of the microtubular cytoskeleton in primary processes and the cell body. To gain an insight into the organization of the microtubular cytoskeleton of the podocyte, we systematically analyzed the expression of microtubule associated proteins (Maps), a family of microtubules interacting proteins with known functions as regulator, scaffold and guidance proteins. We identified microtubule associated protein 1b (MAP1B) to be specifically enriched in podocytes in human and rodent kidney. Using immunogold labeling in electron microscopy, we were able to demonstrate an enrichment of MAP1B in primary processes. A similar association of MAP1B with the microtubule cytoskeleton was detected in cultured podocytes. Subcellular distribution of MAP1B HC and LC1 was analyzed using a double fluorescent reporter MAP1B fusion protein. Subsequently we analyzed mice constitutively depleted of MAP1B. Interestingly, MAP1B KO was not associated with any functional or structural alterations pointing towards a redundancy of MAP proteins in podocytes. In summary, we established MAP1B as a specific marker protein of the podocyte microtubular cytoskeleton.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Hyperzincemia and hypercalprotectinemia (Hz/Hc) is a distinct autoinflammatory entity involving extremely high serum concentrations of the proinflammatory alarmin myeloid-related protein (MRP) 8/14 (S100A8/S100A9 and calprotectin). OBJECTIVE: We sought to characterize the genetic cause and clinical spectrum of Hz/Hc. METHODS: Proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1) gene sequencing was performed in 14 patients with Hz/Hc, and their clinical phenotype was compared with that of 11 patients with pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome. PSTPIP1-pyrin interactions were analyzed by means of immunoprecipitation and Western blotting. A structural model of the PSTPIP1 dimer was generated. Cytokine profiles were analyzed by using the multiplex immunoassay, and MRP8/14 serum concentrations were analyzed by using an ELISA. RESULTS: Thirteen patients were heterozygous for a missense mutation in the PSTPIP1 gene, resulting in a p.E250K mutation, and 1 carried a mutation resulting in p.E257K. Both mutations substantially alter the electrostatic potential of the PSTPIP1 dimer model in a region critical for protein-protein interaction. Patients with Hz/Hc have extremely high MRP8/14 concentrations (2045 ± 1300 μg/mL) compared with those with PAPA syndrome (116 ± 74 μg/mL) and have a distinct clinical phenotype. A specific cytokine profile is associated with Hz/Hc. Hz/Hc mutations altered protein binding of PSTPIP1, increasing interaction with pyrin through phosphorylation of PSTPIP1. CONCLUSION: Mutations resulting in charge reversal in the y-domain of PSTPIP1 (E→K) and increased interaction with pyrin cause a distinct autoinflammatory disorder defined by clinical and biochemical features not found in patients with PAPA syndrome, indicating a unique genotype-phenotype correlation for mutations in the PSTPIP1 gene. This is the first inborn autoinflammatory syndrome in which inflammation is driven by uncontrolled release of members of the alarmin family.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La vitesse de l'onde de pouls (VOP) est la méthode pour mesurer la rigidité artérielle la plus répandue et la plus validée. C'est aussi un prédicteur indépendant de la mortalité. La Matrix Gla- protein (MGP) est une protein qui inhibe les calcifications vasculaires. MGP nécessite une enzyme dérivée de la vitamine K pour être activée, à l'instar de certains facteurs de coagulation. La forme inactive de MGP, connue sous le terme de « desphospho-uncarboxylated MGP » (dp-ucMGP), peut-être mesurée dans le plasma. Plus les apports de vitamine K sont importants plus les taux de dp-ucMGP diminue. Les taux de dp-ucMGP ont déjà été étudiés et associés à différents marqueurs cardiovasculaires (CV), aux événements CV et à la mortalité. Dans notre travail de recherche nous avons émis l'hypothèse que des taux élevés de dp-ucMGP seraient associés à une VOP élevée. Nous avons recruté les participants à travers une étude multicentrique suisse (SKIPOGH). Le processus de recrutement ciblait des familles dans lesquelles plusieurs membres étaient d'accord de participer. Nous avons mesuré la dp-ucMGP plasmatique grâce à la méthode immuno-enzymatique « ELISA ». Concernant la VOP, nous avons mesuré les ondes de pression au niveau carotidien et fémorale grâce à un tonomètre et calculer la vitesse de leurs propagations. Par la suite nous avons utilisé un modèle de régression linéaire multiple afin de déterminer le lien entre la VOP et dp- ucMGP. Le modèle était ajusté pour l'âge, la fonction rénale et les risques CV classiques. Nous avons inclut 1001 participants dans les analyses (475 hommes et 526 femmes). La valeur moyenne de la VOP était de 7.87 ± 2.10 (m/s) et celle de dp-ucMGP de 0.43 ± 0.20 (nmol/L). La VOP était positivement et significativement associée à dp-ucMGP avant comme après ajustement pour le sexe, l'âge, l'indice de masse corporel, la taille, la pression artérielle systolique et diastolique, la fréquence cardiaque, la fonction rénale, les taux de cholestérol (LDL, HDL), la glycémie, la consommation de tabac, la présence d'un diabète, l'utilisation de médicaments antihypertenseurs ou hypolipémiants et la présence d'antécédents CV (P<0.01). En conclusion, des taux élevés de dp-ucMGP sont positivement et indépendamment associés à la rigidité artérielle après ajustement pour les facteurs de risques CV traditionnels, la fonction rénale et l'âge. Des études expérimentales sont nécessaires afin de déterminer si une supplémentation en vitamine K permet de ralentir l'avancement de la rigidité artérielle grâce à son activation de la MGP.