166 resultados para Cooperative Networks
Resumo:
We examine the relationship between structural social capital, resource assembly, and firm performance of entrepreneurs in Africa. We posit that social capital primarily composed of kinship or family ties helps the entrepreneur to raise resources, but it does so at a cost. Using data drawn from small firms in Kampala, Uganda, we explore how shared identity among the entrepreneur's social network moderates this relationship. A large network contributed a higher quantity of resources raised, but at a higher cost when shared identity was high. We discuss the implications of these findings for the role of family ties and social capital in resource assembly, with an emphasis on developing economies.
Resumo:
Nuclear receptors are a major component of signal transduction in animals. They mediate the regulatory activities of many hormones, nutrients and metabolites on the homeostasis and physiology of cells and tissues. It is of high interest to model the corresponding regulatory networks. While molecular and cell biology studies of individual promoters have provided important mechanistic insight, a more complex picture is emerging from genome-wide studies. The regulatory circuitry of nuclear receptor regulated gene expression networks, and their response to cellular signaling, appear highly dynamic, and involve long as well as short range chromatin interactions. We review how progress in understanding the kinetics and regulation of cofactor recruitment, and the development of new genomic methods, provide opportunities but also a major challenge for modeling nuclear receptor mediated regulatory networks.
Resumo:
Almost 30 years ago, Bayesian networks (BNs) were developed in the field of artificial intelligence as a framework that should assist researchers and practitioners in applying the theory of probability to inference problems of more substantive size and, thus, to more realistic and practical problems. Since the late 1980s, Bayesian networks have also attracted researchers in forensic science and this tendency has considerably intensified throughout the last decade. This review article provides an overview of the scientific literature that describes research on Bayesian networks as a tool that can be used to study, develop and implement probabilistic procedures for evaluating the probative value of particular items of scientific evidence in forensic science. Primary attention is drawn here to evaluative issues that pertain to forensic DNA profiling evidence because this is one of the main categories of evidence whose assessment has been studied through Bayesian networks. The scope of topics is large and includes almost any aspect that relates to forensic DNA profiling. Typical examples are inference of source (or, 'criminal identification'), relatedness testing, database searching and special trace evidence evaluation (such as mixed DNA stains or stains with low quantities of DNA). The perspective of the review presented here is not exclusively restricted to DNA evidence, but also includes relevant references and discussion on both, the concept of Bayesian networks as well as its general usage in legal sciences as one among several different graphical approaches to evidence evaluation.
Resumo:
A character network represents relations between characters from a text; the relations are based on text proximity, shared scenes/events, quoted speech, etc. Our project sketches a theoretical framework for character network analysis, bringing together narratology, both close and distant reading approaches, and social network analysis. It is in line with recent attempts to automatise the extraction of literary social networks (Elson, 2012; Sack, 2013) and other studies stressing the importance of character- systems (Woloch, 2003; Moretti, 2011). The method we use to build the network is direct and simple. First, we extract co-occurrences from a book index, without the need for text analysis. We then describe the narrative roles of the characters, which we deduce from their respective positions in the network, i.e. the discourse. As a case study, we use the autobiographical novel Les Confessions by Jean-Jacques Rousseau. We start by identifying co-occurrences of characters in the book index of our edition (Slatkine, 2012). Subsequently, we compute four types of centrality: degree, closeness, betweenness, eigenvector. We then use these measures to propose a typology of narrative roles for the characters. We show that the two parts of Les Confessions, written years apart, are structured around mirroring central figures that bear similar centrality scores. The first part revolves around the mentor of Rousseau; a figure of openness. The second part centres on a group of schemers, depicting a period of deep paranoia. We also highlight characters with intermediary roles: they provide narrative links between the societies in the life of the author. The method we detail in this complete case study of character network analysis can be applied to any work documented by an index. Un réseau de personnages modélise les relations entre les personnages d'un récit : les relations sont basées sur une forme de proximité dans le texte, l'apparition commune dans des événements, des citations dans des dialogues, etc. Notre travail propose un cadre théorique pour l'analyse des réseaux de personnages, rassemblant narratologie, close et distant reading, et analyse des réseaux sociaux. Ce travail prolonge les tentatives récentes d'automatisation de l'extraction de réseaux sociaux tirés de la littérature (Elson, 2012; Sack, 2013), ainsi que les études portant sur l'importance des systèmes de personnages (Woloch, 2003; Moretti, 2011). La méthode que nous utilisons pour construire le réseau est directe et simple. Nous extrayons les co-occurrences d'un index sans avoir recours à l'analyse textuelle. Nous décrivons les rôles narratifs des personnages en les déduisant de leurs positions relatives dans le réseau, donc du discours. Comme étude de cas, nous avons choisi le roman autobiographique Les Confessions, de Jean- Jacques Rousseau. Nous déduisons les co-occurrences entre personnages de l'index présent dans l'édition Slatkine (Rousseau et al., 2012). Sur le réseau obtenu, nous calculons quatre types de centralité : le degré, la proximité, l'intermédiarité et la centralité par vecteur propre. Nous utilisons ces mesures pour proposer une typologie des rôles narratifs des personnages. Nous montrons que les deux parties des Confessions, écrites à deux époques différentes, sont structurées autour de deux figures centrales, qui obtiennent des mesures de centralité similaires. La première partie est construite autour du mentor de Rousseau, qui a symbolisé une grande ouverture. La seconde partie se focalise sur un groupe de comploteurs, et retrace une période marquée par la paranoïa chez l'auteur. Nous mettons également en évidence des personnages jouant des rôles intermédiaires, et de fait procurant un lien narratif entre les différentes sociétés couvrant la vie de l'auteur. La méthode d'analyse des réseaux de personnages que nous décrivons peut être appliquée à tout texte de fiction comportant un index.
Resumo:
Explaining the evolution of sociality is challenging because social individuals face disadvantages that must be balanced by intrinsic benefits of living in a group. One potential route towards the evolution of sociality may emerge from the avoidance of dispersal, which can be risky in some environments. Although early studies found that local competition may cancel the benefits of cooperation in viscous populations, subsequent studies have identified conditions, such as the presence of kin recognition or specific demographic conditions, under which altruism will still spread. Most of these studies assume that the costs of cooperating outweigh the direct benefits (strong altruism). In nature, however, many organisms gain synergistic benefits from group living, which may counterbalance even costly altruistic behaviours. Here, we use an individual based model to investigate how dispersal and social behaviour co-evolve when social behaviours result in synergistic benefits that counterbalance the relative cost of altruism to a greater extent than assumed in previous models. When the cost of cooperation is high, selection for sociality responds strongly to the cost of dispersal. In particular, cooperation can begin to spread in a population when higher cooperation levels become correlated with lower dispersal tendencies within individuals. In contrast, less costly social behaviours are less sensitive to the cost of dispersal. In line with previous studies, we find that mechanisms of global population control also affect this relationship: when whole patches (groups) go extinct each generation, selection favours a relatively high dispersal propensity, and social behaviours evolve only when they are not very costly. If random individuals within groups experience mortality each generation to maintain a global carrying capacity, on the other hand, social behaviours spread and dispersal is reduced, even when the latter is not costly.
Resumo:
Many complex systems may be described by not one but a number of complex networks mapped on each other in a multi-layer structure. Because of the interactions and dependencies between these layers, the state of a single layer does not necessarily reflect well the state of the entire system. In this paper we study the robustness of five examples of two-layer complex systems: three real-life data sets in the fields of communication (the Internet), transportation (the European railway system), and biology (the human brain), and two models based on random graphs. In order to cover the whole range of features specific to these systems, we focus on two extreme policies of system's response to failures, no rerouting and full rerouting. Our main finding is that multi-layer systems are much more vulnerable to errors and intentional attacks than they appear from a single layer perspective.
Resumo:
Genome-scale metabolic network reconstructions are now routinely used in the study of metabolic pathways, their evolution and design. The development of such reconstructions involves the integration of information on reactions and metabolites from the scientific literature as well as public databases and existing genome-scale metabolic models. The reconciliation of discrepancies between data from these sources generally requires significant manual curation, which constitutes a major obstacle in efforts to develop and apply genome-scale metabolic network reconstructions. In this work, we discuss some of the major difficulties encountered in the mapping and reconciliation of metabolic resources and review three recent initiatives that aim to accelerate this process, namely BKM-react, MetRxn and MNXref (presented in this article). Each of these resources provides a pre-compiled reconciliation of many of the most commonly used metabolic resources. By reducing the time required for manual curation of metabolite and reaction discrepancies, these resources aim to accelerate the development and application of high-quality genome-scale metabolic network reconstructions and models.
Resumo:
The forensic two-trace problem is a perplexing inference problem introduced by Evett (J Forensic Sci Soc 27:375-381, 1987). Different possible ways of wording the competing pair of propositions (i.e., one proposition advanced by the prosecution and one proposition advanced by the defence) led to different quantifications of the value of the evidence (Meester and Sjerps in Biometrics 59:727-732, 2003). Here, we re-examine this scenario with the aim of clarifying the interrelationships that exist between the different solutions, and in this way, produce a global vision of the problem. We propose to investigate the different expressions for evaluating the value of the evidence by using a graphical approach, i.e. Bayesian networks, to model the rationale behind each of the proposed solutions and the assumptions made on the unknown parameters in this problem.
Resumo:
In a weighted spatial network, as specified by an exchange matrix, the variances of the spatial values are inversely proportional to the size of the regions. Spatial values are no more exchangeable under independence, thus weakening the rationale for ordinary permutation and bootstrap tests of spatial autocorrelation. We propose an alternative permutation test for spatial autocorrelation, based upon exchangeable spatial modes, constructed as linear orthogonal combinations of spatial values. The coefficients obtain as eigenvectors of the standardised exchange matrix appearing in spectral clustering, and generalise to the weighted case the concept of spatial filtering for connectivity matrices. Also, two proposals aimed at transforming an acessibility matrix into a exchange matrix with with a priori fixed margins are presented. Two examples (inter-regional migratory flows and binary adjacency networks) illustrate the formalism, rooted in the theory of spectral decomposition for reversible Markov chains.