87 resultados para Conscious Monkey
Resumo:
This study was undertaken to assess in conscious normotensive rats the effects of beta-adrenoceptor stimulation on plasma neuropeptide Y (NPY) levels. Wistar rats were subjected to adrenal demedullation on the right side and were either adrenalectomized or sham-operated on the left side. Eleven days later, the conscious rats were infused i.v. for 30 min with either isoproterenol (10 ng/min) or its vehicle. Plasma NPY levels were significantly lower (23.8 +/- 2.6 pM, means +/- S.E.M., n = 12, P < 0.01) in vehicle-treated medullectomized rats than in corresponding sham-operated controls (36.7 +/- 4.1 pM, n = 12). The medullectomized rats infused with isoproterenol showed plasma NPY levels (36.7 +/- 3.3 pM, n = 11) comparable to those of sham-operated rats having received the vehicle. These data therefore demonstrate that plasma NPY levels are lower in rats without adrenal medulla and that in these animals isoproterenol increases NPY release, most likely by activating pre-synaptic beta-adrenoceptors.
Resumo:
The current state of empirical investigations refers to consciousness as an all-or-none phenomenon. However, a recent theoretical account opens up this perspective by proposing a partial level (between nil and full) of conscious perception. In the well-studied case of single-word reading, short-lived exposure can trigger incomplete word-form recognition wherein letters fall short of forming a whole word in one's conscious perception thereby hindering word-meaning access and report. Hence, the processing from incomplete to complete word-form recognition straightforwardly mirrors a transition from partial to full-blown consciousness. We therefore hypothesized that this putative functional bottleneck to consciousness (i.e. the perceptual boundary between partial and full conscious perception) would emerge at a major key hub region for word-form recognition during reading, namely the left occipito-temporal junction. We applied a real-time staircase procedure and titrated subjective reports at the threshold between partial (letters) and full (whole word) conscious perception. This experimental approach allowed us to collect trials with identical physical stimulation, yet reflecting distinct perceptual experience levels. Oscillatory brain activity was monitored with magnetoencephalography and revealed that the transition from partial-to-full word-form perception was accompanied by alpha-band (7-11 Hz) power suppression in the posterior left occipito-temporal cortex. This modulation of rhythmic activity extended anteriorly towards the visual word form area (VWFA), a region whose selectivity for word-forms in perception is highly debated. The current findings provide electrophysiological evidence for a functional bottleneck to consciousness thereby empirically instantiating a recently proposed partial perspective on consciousness. Moreover, the findings provide an entirely new outlook on the functioning of the VWFA as a late bottleneck to full-blown conscious word-form perception.
Resumo:
Diagnosis and decisions on life-sustaining treatment (LST) in disorders of consciousness, such as the vegetative state (VS) and the minimally conscious state (MCS), are challenging for neurologists. The locked-in syndrome (LiS) is sometimes confounded with these disorders by less experienced physicians. We aimed to investigate (1) the application of diagnostic knowledge, (2) attitudes concerning limitations of LST, and (3) further challenging aspects in the care of patients. A vignette-based online survey with a randomized presentation of a VS, MCS, or LiS case scenario was conducted among members of the German Society for Neurology. A sample of 503 neurologists participated (response rate 16.4%). An accurate diagnosis was given by 86% of the participants. The LiS case was diagnosed more accurately (94%) than the VS case (79%) and the MCS case (87%, p < 0.001). Limiting LST for the patient was considered by 92, 91, and 84% of the participants who accurately diagnosed the VS, LiS, and MCS case (p = 0.09). Overall, most participants agreed with limiting cardiopulmonary resuscitation; a minority considered limiting artificial nutrition and hydration. Neurologists regarded the estimation of the prognosis and determination of the patients' wishes as most challenging. The majority of German neurologists accurately applied the diagnostic categories VS, MCS, and LiS to case vignettes. Their attitudes were mostly in favor of limiting life-sustaining treatment and slightly differed for MCS as compared to VS and LiS. Attitudes toward LST strongly differed according to circumstances (e.g., patient's will opposed treatment) and treatment measures.
Resumo:
To analyze the role of the murine hepatoportal glucose sensor in the control of whole-body glucose metabolism, we infused glucose at a rate corresponding to the endogenous glucose production rate through the portal vein of conscious mice (Po-mice) that were fasted for 6 h. Mice infused with glucose at the same rate through the femoral vein (Fe-mice) and mice infused with a saline solution (Sal-mice) were used as controls. In Po-mice, hypoglycemia progressively developed until glucose levels dropped to a nadir of 2.3 +/- 0.1 mmol/l, whereas in Fe-mice, glycemia rapidly and transiently developed, and glucose levels increased to 7.7 +/- 0.6 mmol/l before progressively returning to fasting glycemic levels. Plasma insulin levels were similar in both Po- and Fe-mice during and at the end of the infusion periods (21.2 +/- 2.2 vs. 25.7 +/- 0.9 microU/ml, respectively, at 180 min of infusion). The whole-body glucose turnover rate was significantly higher in Po-mice than in Fe-mice (45.9 +/- 3.8 vs. 37.7 +/- 2.0 mg x kg(-1) x min)-1), respectively) and in Sal-mice (24.4 +/- 1.8 mg x kg(-1) x min(-1)). Somatostatin co-infusion with glucose in Po-mice prevented hypoglycemia without modifying the plasma insulin profile. Finally, tissue glucose clearance, which was determined after injecting 14C-2-deoxyglucose, increased to a higher level in Po-mice versus Fe-mice in the heart, brown adipose tissue, and the soleus muscle. Our data show that stimulation of the hepatoportal glucose sensor induced hypoglycemia and increased glucose utilization by a combination of insulin-dependent and insulin-independent or -sensitizing mechanisms. Furthermore, activation of the glucose sensor and/or transmission of its signal to target tissues can be blocked by somatostatin.
Resumo:
In order to interact with the multisensory world that surrounds us, we must integrate various sources of sensory information (vision, hearing, touch...). A fundamental question is thus how the brain integrates the separate elements of an object defined by several sensory components to form a unified percept. The superior colliculus was the main model for studying multisensory integration. At the cortical level, until recently, multisensory integration appeared to be a characteristic attributed to high-level association regions. First, we describe recently observed direct cortico-cortical connections between different sensory cortical areas in the non-human primate and discuss the potential role of these connections. Then, we show that the projections between different sensory and motor cortical areas and the thalamus enabled us to highlight the existence of thalamic nuclei that, by their connections, may represent an alternative pathway for information transfer between different sensory and/or motor cortical areas. The thalamus is in position to allow a faster transfer and even an integration of information across modalities. Finally, we discuss the role of these non-specific connections regarding behavioral evidence in the monkey and recent electrophysiological evidence in the primary cortical sensory areas.
Resumo:
The mechanisms sustaining high blood pressure in conscious one-kidney, one-clip Goldblatt rats were evaluated with the use of SK&F 64139, a phenylethanolamine N-methyltransferase inhibitor capable of crossing the blood-brain barrier and of captopril, an angiotensin converting enzyme inhibitor. The rats were studied 3 weeks after left renal artery clipping and contralateral nephrectomy. During the developmental phase of hypertension, two groups of rats were maintained on a regular salt (RNa) intake, whereas two other groups were given a low salt (LNa) diet. On the day of the experiment, the base-line mean blood pressure measured in the LNa rats (177.4 +/- 5.2 mm Hg, mean +/- S.E., n = 15) was similar to that measured in the RNa rats (178.7 +/- 5.4 mm Hg, n = 16). SK&F 64139 (12.5 mg p.o.) induced a significantly more pronounced (P less than .001) blood pressure decrease in the RNa rats (-25.6 +/- 3.6 mm Hg, n = 8) than in the LNa rats (-4.3 +/- 3.3 mm Hg, n = 7) during a 90-min observation period. On the other hand, captopril (10 mg p.o.) normalized blood pressure in LNa rats (n = 8), but produced only a 13.4 mm Hg blood pressure drop in RNa rats (n = 8). RNa rats treated with SK&F 64139 were found to have decreased phenylethanolamine N-methyltransferase activity by an average 80% in selected brain stem nuclei when compared with nontreated rats. No significant difference in plasma catecholamine levels was found between the RNa and LNa rats. These results suggest that, in this experimental model of hypertension, the sodium ion might increase the model of hypertension, the sodium ion might increase the vasoconstrictor contribution of the sympathetic system via a centrally mediated neurogenic mechanism while at the same time it decreases the renin-dependency of the high blood pressure.
Resumo:
Debris flows are among the most dangerous processes in mountainous areas due to their rapid rate of movement and long runout zone. Sudden and rather unexpected impacts produce not only damages to buildings and infrastructure but also threaten human lives. Medium- to regional-scale susceptibility analyses allow the identification of the most endangered areas and suggest where further detailed studies have to be carried out. Since data availability for larger regions is mostly the key limiting factor, empirical models with low data requirements are suitable for first overviews. In this study a susceptibility analysis was carried out for the Barcelonnette Basin, situated in the southern French Alps. By means of a methodology based on empirical rules for source identification and the empirical angle of reach concept for the 2-D runout computation, a worst-case scenario was first modelled. In a second step, scenarios for high, medium and low frequency events were developed. A comparison with the footprints of a few mapped events indicates reasonable results but suggests a high dependency on the quality of the digital elevation model. This fact emphasises the need for a careful interpretation of the results while remaining conscious of the inherent assumptions of the model used and quality of the input data.
Resumo:
BACKGROUND: Insulin resistance and arterial hypertension are related, but the underlying mechanism is unknown. Endothelial nitric oxide synthase (eNOS) is expressed in skeletal muscle, where it may govern metabolic processes, and in the vascular endothelium, where it regulates arterial pressure. METHODS AND RESULTS: To study the role of eNOS in the control of the metabolic action of insulin, we assessed insulin sensitivity in conscious mice with disruption of the gene encoding for eNOS. eNOS(-/-) mice were hypertensive and had fasting hyperinsulinemia, hyperlipidemia, and a 40% lower insulin-stimulated glucose uptake than control mice. Insulin resistance in eNOS(-/-) mice was related specifically to impaired NO synthesis, because in equally hypertensive 1-kidney/1-clip mice (a model of renovascular hypertension), insulin-stimulated glucose uptake was normal. CONCLUSIONS: These results indicate that eNOS is important for the control not only of arterial pressure but also of glucose and lipid homeostasis. A single gene defect, eNOS deficiency, may represent the link between metabolic and cardiovascular disease.
Resumo:
Dans le domaine de la perception, l'apprentissage est contraint par la présence d'une architecture fonctionnelle constituée d'aires corticales distribuées et très spécialisées. Dans le domaine des troubles visuels d'origine cérébrale, l'apprentissage d'un patient hémi-anopsique ou agnosique sera limité par ses capacités perceptives résiduelles, mais un déficit de reconnaissance visuelle de nature apparemment perceptive, peut également être associé à une altération des représentations en mémoire à long terme. Des réseaux neuronaux distincts pour la reconnaissance - cortex temporal - et pour la localisation des sons - cortex pariétal - ont été décrits chez l'homme. L'étude de patients cérébro-lésés confirme le rôle des indices spatiaux dans un traitement auditif explicite du « where » et dans la discrimination implicite du « what ». Cette organisation, similaire à ce qui a été décrit dans la modalité visuelle, faciliterait les apprentissages perceptifs. Plus généralement, l'apprentissage implicite fonde une grande partie de nos connaissances sur le monde en nous rendant sensible, à notre insu, aux règles et régularités de notre environnement. Il serait impliqué dans le développement cognitif, la formation des réactions émotionnelles ou encore l'apprentissage par le jeune enfant de sa langue maternelle. Le caractère inconscient de cet apprentissage est confirmé par l'étude des temps de réaction sériels de patients amnésiques dans l'acquisition d'une grammaire artificielle. Son évaluation pourrait être déterminante dans la prise en charge ré-adaptative. [In the field of perception, learning is formed by a distributed functional architecture of very specialized cortical areas. For example, capacities of learning in patients with visual deficits - hemianopia or visual agnosia - from cerebral lesions are limited by perceptual abilities. Moreover a visual deficit in link with abnormal perception may be associated with an alteration of representations in long term (semantic) memory. Furthermore, perception and memory traces rely on parallel processing. This has been recently demonstrated for human audition. Activation studies in normal subjects and psychophysical investigations in patients with focal hemispheric lesions have shown that auditory information relevant to sound recognition and that relevant to sound localisation are processed in parallel, anatomically distinct cortical networks, often referred to as the "What" and "Where" processing streams. Parallel processing may appear counterintuitive from the point of view of a unified perception of the auditory world, but there are advantages, such as rapidity of processing within a single stream, its adaptability in perceptual learning or facility of multisensory interactions. More generally, implicit learning mechanisms are responsible for the non-conscious acquisition of a great part of our knowledge about the world, using our sensitivity to the rules and regularities structuring our environment. Implicit learning is involved in cognitive development, in the generation of emotional processing and in the acquisition of natural language. Preserved implicit learning abilities have been shown in amnesic patients with paradigms like serial reaction time and artificial grammar learning tasks, confirming that implicit learning mechanisms are not sustained by the cognitive processes and the brain structures that are damaged in amnesia. In a clinical perspective, the assessment of implicit learning abilities in amnesic patients could be critical for building adapted neuropsychological rehabilitation programs.]
Resumo:
The active fragment derived from factor XII (factor XIIf) was purified from human plasma and administered intravenously to normotensive conscious rats. Factor XIIf-mediated hypotension was dose-dependent and augmented by pretreatment with captopril, an inhibitor of the angiotensin I- and bradykinin-processing enzyme. In contrast, factor XIIf-induced hypotension was not enhanced by blockade of the renin-angiotensin system by saralasin, a competitive antagonist of angiotensin II at the vascular receptor level. These results suggest that factor XIIf-mediated hypotension is due to the formation of bradykinin.
Resumo:
Neuropeptide Y (NPY) is a peptide with vasoconstrictor properties known to be present in the central nervous system as well as in sympathetic nerve endings and the adrenal medulla. The purposes of this study were to investigate in normotensive conscious rats the effects of nonpressor doses of NPY on cardiac output and regional blood flow distribution (using radiolabeled microspheres) as well as on plasma renin activity, plasma catecholamine and vasopressin levels. NPY (0.1 microgram/min) infused i.v. for 30 min modified neither blood pressure nor heart rate. Cardiac index was at comparable levels in NPY- as in vehicle-treated rats (17.7 +/- 1.6, n = 8, vs. 21.3 +/- 0.9 ml/min/100 g, n = 8, mean +/- S.E.M.). There was no significant difference in regional blood flow distribution between the two groups of rats, except for the large intestine (0.42 +/- 0.06 vs. 0.71 +/- 0.1 ml/min/g in NPY- and vehicle-treated rats, respectively, P less than .05). Basal plasma renin activity and catecholamine levels were not modified by NPY whereas plasma vasopressin levels were lower (P less than .05) in rats given NPY (0.76 +/- 0.3 pg/ml, n = 8) than in those having received the vehicle (2.2 +/- 0.4 pg/ml).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Recent multisensory research has emphasized the occurrence of early, low-level interactions in humans. As such, it is proving increasingly necessary to also consider the kinds of information likely extracted from the unisensory signals that are available at the time and location of these interaction effects. This review addresses current evidence regarding how the spatio-temporal brain dynamics of auditory information processing likely curtails the information content of multisensory interactions observable in humans at a given latency and within a given brain region. First, we consider the time course of signal propagation as a limitation on when auditory information (of any kind) can impact the responsiveness of a given brain region. Next, we overview the dual pathway model for the treatment of auditory spatial and object information ranging from rudimentary to complex environmental stimuli. These dual pathways are considered an intrinsic feature of auditory information processing, which are not only partially distinct in their associated brain networks, but also (and perhaps more importantly) manifest only after several tens of milliseconds of cortical signal processing. This architecture of auditory functioning would thus pose a constraint on when and in which brain regions specific spatial and object information are available for multisensory interactions. We then separately consider evidence regarding mechanisms and dynamics of spatial and object processing with a particular emphasis on when discriminations along either dimension are likely performed by specific brain regions. We conclude by discussing open issues and directions for future research.
Resumo:
The article is concerned with the formal definition of a largely unnoticed factor in narrative structure. Based on the assumptions that (1) the semantics of a written text depend, among other factors, directly on its visual alignment in space, that (2) the formal structure of a text has to meet that of its spatial presentation and that (3) these assumptions hold true also for narrative texts (which, however, in modern times typically conceal their spatial dimensions by a low-key linear layout), it is argued that, how ever low-key, the expected material shape of a given narrative determines the configuration of its plot by its author. The ,implied book' thus denotes an author's historically assumable, not necessarily conscious idea of how his text, which is still in the process of creation, will be dimensionally presented and under these circumstances visually absorbed. Assuming that an author's knowledge of this later (potentially) substantiated material form influences the composition, the implied book is to be understood as a text-genetically determined, structuring moment of the text. Historically reconstructed, it thus serves the methodical analysis of structural characteristics of a completed text.
Resumo:
OBJECTIVE: Critical care is a working environment with frequent exposure to stressful events. High levels of psychological stress have been associated with increased prevalence of burnout. Psychological distress acts as a potent trigger of cortisol secretions. We attempted to objectify endocrine stress reactivity. DESIGN: Observational cohort study during two 12-day periods in successive years. SETTING: A tertiary multidisciplinary neonatal and pediatric intensive care unit (33 beds). SUBJECTS: One hundred and twelve nurses and 27 physicians (94% accrual rate). INTERVENTIONS AND MEASUREMENTS: Cortisol determined from salivary samples collected every 2 hrs and after stressful events. Participants recorded the subjective perception of stress with every sample. Endocrine reactions were defined as transient surges in cortisol of >50% and 2.5 nmol/L over the baseline. MAIN RESULTS: During 7,145 working hours, we observed 474 (12.5%) endocrine reactions from 3,781 samples. The mean cortisol increase amounted to 10.6 nmol/L (219%). The mean occurrence rate of endocrine reactions per subject and sample was 0.159 (range, 0-0.43). Although the mean raw cortisol levels were lower in experienced team members (>3 yrs of intensive care vs. <3 yrs, 4.1 vs. 4.95 nmol/L, p < .001), professional experience failed to attenuate the frequency and magnitude of endocrine reactions, except for the subgroup of nurses and physicians with >8 yrs of intensive care experience. A high proportion (71.3%) of endocrine reactions occurred without conscious perception of stress. Unawareness of stress was higher in intensive care nurses (75.1%) than in intermediate care nurses (51.8%, p < .01). CONCLUSIONS: Stress-related cortisol surges occur frequently in neonatal and pediatric critical care staff. Cortisol increases are independent of subjective stress perception. Professional experience does not abate the endocrine stress reactivity.