91 resultados para Compensatory Eating
Resumo:
OBJECTIVES: In a clinical population, we estimated the frequency of mood disorders among 271 patients suffering from Anorexia Nervosa (AN) and Bulimia Nervosa (BN) in comparison to a control group matched for age and gender. METHOD: The frequency of mood disorders was measured using the Mini International Neuropsychiatric Interview (MINI), DSM-IV version. RESULTS: Mood disorders were more frequent among eating disorder (ED) patients than among controls, with a global prevalence of the order of 80% for each ED group. The majority of the mood disorders comorbid with ED were depressive disorders (MDD and dysthymia). The relative chronology of onset of these disorders was equivocal, because mood disorders in some cases preceded and in others followed the onset of the eating disorders. LIMITATIONS: Our sample was characterized by patients with severe ED and high comorbidities, and thus do not represent the entire population of AN or BN. This also may have resulted in an overestimation of prevalence. CONCLUSION: Mood disorders appear significantly more frequently in patients seeking care for ED than in controls. These results have implications for the assessment and treatment of ED patients, and for the aetio-pathogenesis of these disorders.
Resumo:
Proteases are important for regulating multiple tumorigenic processes, including angiogenesis, tumor growth, and invasion. Elevated protease expression is associated with poor patient prognosis across numerous tumor types. Several multigene protease families have been implicated in cancer, including cysteine cathepsins. However, whether individual family members have unique roles or are functionally redundant remains poorly understood. Here we demonstrate stage-dependent effects of simultaneously deleting cathepsin B (CtsB) and CtsS in a murine pancreatic neuroendocrine tumor model. Early in tumorigenesis, the double knockout results in an additive reduction in angiogenic switching, whereas at late stages, several tumorigenic phenotypes are unexpectedly restored to wild-type levels. We identified CtsZ, which is predominantly supplied by tumor-associated macrophages, as the compensatory protease that regulates the acquired tumor-promoting functions of lesions deficient in both CtsB and CtsS. Thus, deletion of multiple cathepsins can lead to stage-dependent, compensatory mechanisms in the tumor microenvironment, which has potential implications for the clinical consideration of selective versus pan-family cathepsin inhibitors in cancer.
Resumo:
Cet article a pour but d'identifier et de mieux comprendre les liens entre les motivations des pratiquantes de sports de remise en forme, les troubles du comportement alimentaire (TCA) et les troubles psychologiques associés (i.e., insatisfaction corporelle, dépendance à l'exercice physique). Au total, 1270 pratiquantes ont répondu à un questionnaire et 40 ont participé à un entretien semi-directif. Les motivations de perte de poids et/ou modification de l'apparence corporelle sont en lien avec les TCA et l'insatisfaction corporelle. La dépendance à l'exercice physique n'est pas systématique chez les femmes avec TCA. Les pratiquantes de sports de remise en forme motivées uniquement par la perte de poids et/ou la modification de l'apparence sont plus à risques dans levdéveloppement des TCA. The aim of this study was to identify and to better understand links between females' motives in fitness sports, eating disorders (ED) and associated psychological disorders (i.e. body dissatisfaction, exercise dependence). In all, 1270 women were asked by questionnaire and 40 by semi-structured interview. Weight loss/body appearance change motives are related to ED and body dissatisfaction. Exercise dependence are not systematic in women with ED. Fitness sports are at risk in the development of ED for women motivated only by weight loss/body appearance change motives
Resumo:
Early in female mammalian embryonic development, cells randomly inactivate one of the two X chromosomes to achieve overall equal inactivation of parental X-linked alleles. Hcfc1 is a highly conserved X-linked mouse gene that encodes HCF-1 - a transcriptional co-regulator implicated in cell proliferation in tissue culture cells. By generating a Cre-recombinase inducible Hcfc1 knock-out (Hcfc1(lox)) allele in mice, we have probed the role of HCF-1 in actively proliferating embryonic cells and in cell-cycle re-entry of resting differentiated adult cells using a liver regeneration model. HCF-1 function is required for both extraembryonic and embryonic development. In heterozygous Hcfc1(lox/+) female embryos, however, embryonic epiblast-specific Cre-induced Hcfc1 deletion (creating an Hcfc1(epiKO) allele) around E5.5 is well tolerated; it leads to a mixture of HCF-1-positive and -negative epiblast cells owing to random X-chromosome inactivation of the wild-type or Hcfc1(epiKO) mutant allele. At E6.5 and E7.5, both HCF-1-positive and -negative epiblast cells proliferate, but gradually by E8.5, HCF-1-negative cells disappear owing to cell-cycle exit and apoptosis. Although generating a temporary developmental retardation, the loss of HCF-1-negative cells is tolerated, leading to viable heterozygous offspring with 100% skewed inactivation of the X-linked Hcfc1(epiKO) allele. In resting adult liver cells, the requirement for HCF-1 in cell proliferation was more evident as hepatocytes lacking HCF-1 fail to re-enter the cell cycle and thus to proliferate during liver regeneration. The survival of the heterozygous Hcfc1(epiKO/+) female embryos, even with half the cells genetically compromised, illustrates the developmental plasticity of the post-implantation mouse embryo - in this instance, permitting survival of females heterozygous for an X-linked embryonic lethal allele.
Resumo:
FGF-2 has been implicated in the cardiac response to hypertrophic stimuli. Angiotensin II (Ang II) contributes to maintain elevated blood pressure in hypertensive individuals and exerts direct trophic effects on cardiac cells. However, the role of FGF-2 in Ang II-induced cardiac hypertrophy has not been established. Therefore, mice deficient in FGF-2 expression were studied using a model of Ang II-dependent hypertension and cardiac hypertrophy. Echocardiographic measurements show the presence of dilated cardiomyopathy in normotensive mice lacking FGF-2. Moreover, hypertensive mice without FGF-2 developed no compensatory cardiac hypertrophy. In wild-type mice, hypertrophy was associated with a stimulation of the c-Jun N-terminal kinase, the extracellular signal regulated kinase, and the p38 kinase pathways. In contrast, mitogen-activated protein kinase (MAPK) activation was markedly attenuated in FGF-2-deficient mice. In vitro, FGF-2 of fibroblast origin was demonstrated to be essential in the paracrine stimulation of MAPK activation in cardiomyocytes. Indeed, fibroblasts lacking FGF-2 expression have a defective capacity for releasing growth factors to induce hypertrophic responses in cardiomyocytes. Therefore, these results identify the cardiac fibroblast population as a primary integrator of hypertrophic stimuli in the heart, and suggest that FGF-2 is a crucial mediator of cardiac hypertrophy via autocrine/paracrine actions on cardiac cells.
Resumo:
Clenbuterol is a β2 agonist agent with anabolic properties given by the increase in the muscular mass in parallel to the decrease of the body fat. For this reason, the use of clenbuterol is forbidden by the World Anti-Doping Agency (WADA) in the practice of sport. This compound is of particular interest for anti-doping authorities and WADA-accredited laboratories due to the recent reporting of risk of unintentional doping following the eating of meat contaminated with traces of clenbuterol in some countries. In this work, the development and the validation of an ultra-high pressure liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) method for the quantification of clenbuterol in human urine is described. The analyte was extracted from urine samples by liquid-liquid extraction (LLE) in basic conditions using tert butyl-methyl ether (TBME) and analyzed by UHPLC-MS/MS with a linear gradient of acetonitrile in 9min only. The simple and rapid method presented here was validated in compliance with authority guidelines and showed a limit of quantification at 5pg/mL and a linearity range from 5pg/mL to 300pg/mL. Good trueness (85.8-105%), repeatability (5.7-10.6% RSD) and intermediate precision (5.9-14.9% RSD) results were obtained. The method was then applied to real samples from eighteen volunteers collecting urines after single oral doses administration (1, 5 and 10μg) of clenbuterol-enriched yogurts.
Resumo:
RESUME GRAND PUBLICLe cerveau est composé de différents types cellulaires, dont les neurones et les astrocytes. Faute de moyens pour les observer, les astrocytes sont très longtemps restés dans l'ombre alors que les neurones, bénéficiant des outils ad hoc pour être stimulés et étudiés, ont fait l'objet de toutes les attentions. Le développement de l'imagerie cellulaire et des outils fluorescents ont permis d'observer ces cellules non électriquement excitables et d'obtenir des informations qui laissent penser que ces cellules sont loin d'être passives et participent activement au fonctionnement cérébral. Cette participation au fonctionnement cérébral se fait en partie par le biais de la libération de substances neuro-actives (appellées gliotransmetteurs) que les astrocytes libèrent à proximité des synapses permettant ainsi de moduler le fonctionnement neuronal. Cette libération de gliotransmetteurs est principalement causée par l'activité neuronale que les astrocytes sont capables de sentir. Néanmoins, nous savons encore peu de chose sur les propriétés précises de la libération des gliotransmetteurs. Comprendre les propriétés spatio-temporelles de cette libération est essentiel pour comprendre le mode de communication de ces cellules et leur implication dans la transmission de l'information cérébrale. En utilisant des outils fluorescents récemment développés et en combinant différentes techniques d'imagerie cellulaire, nous avons pu obtenir des informations très précises sur la libération de ces gliotransmetteurs par les astrocytes. Nous avons ainsi confirmé que cette libération était un processus très rapide et qu'elle était contrôlée par des augmentations de calcium locales et rapides. Nous avons également décrit une organisation complexe de la machinerie supportant la libération des gliotransmetteurs. Cette organisation complexe semble être à la base de la libération extrêmement rapide des gliotransmetteurs. Cette rapidité de libération et cette complexité structurelle semblent indiquer que les astrocytes sont des cellules particulièrement adaptées à une communication rapide et qu'elles peuvent, au même titre que les neurones dont elles seraient les partenaires légitimes, participer à la transmission et à l'intégration de l'information cérébrale.RESUMEDe petites vésicules, les « SLMVs » ou « Synaptic Like MicroVesicles », exprimant des transporteurs vésiculaires du glutamate (VGluTs) et libérant du glutamate par exocytose régulée, ont récemment été décrites dans les astrocytes en culture et in situ. Néanmoins, nous savons peu de chose sur les propriétés précises de la sécrétion de ces SLMVs. Contrairement aux neurones, le couplage stimulussécrétion des astrocytes n'est pas basé sur l'ouverture des canaux calciques membranaires mais nécessite l'intervention de seconds messagers et la libération du calcium par le reticulum endoplasmique (RE). Comprendre les propriétés spatio-temporelles de la sécrétion astrocytaire est essentiel pour comprendre le mode de communication de ces cellules et leur implication dans la transmission de l'information cérébrale. Nous avons utilisé des outils fluorescents récemment développés pour étudier le recyclage des vésicules synaptiques glutamatergiques comme les colorants styryles et la pHluorin afin de pouvoir suivre la sécrétion des SLMVs à l'échelle de la cellule mais également à l'échelle des évènements. L'utilisation combinée de l'épifluorescence et de la fluorescence à onde évanescente nous a permis d'obtenir une résolution temporelle et spatiale sans précédent. Ainsi avons-nous confirmé que la sécrétion régulée des astrocytes était un processus très rapide (de l'ordre de quelques centaines de millisecondes). Nous avons découvert que cette sécrétion est contrôlée par des augmentations de calcium locales et rapides. Nous avons également décrit des compartiments cytosoliques délimités par le RE à proximité de la membrane plasmique et contenant les SLMVs. Cette organisation semble être à la base du couplage rapide entre l'activation des GPCRs et la sécrétion. L'existence de compartiments subcellulaires indépendants permettant de contenir les messagers intracellulaires et de limiter leur diffusion semble compenser de manière efficace la nonexcitabilité électrique des astrocytes. Par ailleurs, l'existence des différents pools de vésicules recrutés séquentiellement et fusionnant selon des modalités distinctes ainsi que l'existence de mécanismes permettant le renouvellement de ces pools lors de la stimulation suggèrent que les astrocytes peuvent faire face à une stimulation soutenue de leur sécrétion. Ces données suggèrent que la libération de gliotransmetteurs par exocytose régulée n'est pas seulement une propriété des astrocytes en culture mais bien le résultat d'une forte spécialisation de ces cellules pour la sécrétion. La rapidité de cette sécrétion donne aux astrocytes toutes les compétences pour pouvoir intervenir de manière active dans la transmission et l'intégration de l'information.ABSTRACTRecently, astrocytic synaptic like microvesicles (SLMVs), that express vesicular glutamate transporters (VGluTs) and are able to release glutamate by Ca2+-dependent regulated exocytosis, have been described both in tissue and in cultured astrocytes. Nevertheless, little is known about the specific properties of regulated secretion in astrocytes. Important differences may exist between astrocytic and neuronal exocytosis, starting from the fact that stimulus-secretion coupling in astrocytes is voltage independent, mediated by G-protein-coupled receptors and the release of Ca2+ from internal stores. Elucidating the spatiotemporal properties of astrocytic exo-endocytosis is, therefore, of primary importance for understanding the mode of communication of these cells and their role in brain signaling. We took advantage of fluorescent tools recently developed for studying recycling of glutamatergic vesicles at synapses like styryl dyes and pHluorin in order to follow exocytosis and endocytosis of SLMVs at the level of the entire cell or at the level of single event. We combined epifluorescence and total internal reflection fluorescence imaging to investigate, with unprecedented temporal and spatial resolution, the events underlying the stimulus-secretion in astrocytes. We confirmed that exo-endocytosis process in astrocytes proceeds with a time course on the millisecond time scale. We discovered that SLMVs exocytosis is controlled by local and fast Ca2+ elevations; indeed submicrometer cytosolic compartments delimited by endoplasmic reticulum (ER) tubuli reaching beneath the plasma membrane and containing SLMVs. Such complex organization seems to support the fast stimulus-secretion coupling reported here. Independent subcellular compartments formed by ER, SLMVs and plasma membrane containing intracellular messengers and limiting their diffusion seem to compensate efficiently the non-electrical excitability of astrocytes. Moreover, the existence of two pools of SLMVs which are sequentially recruited suggests a compensatory mechanisms allowing the refill of SLMVs and supporting exocytosis process over a wide range of multiple stimuli. These data suggest that regulated secretion is not only a feature of cultured astrocytes but results from a strong specialization of these cells. The rapidity of secretion demonstrates that astrocytes are able to actively participate in brain information transmission and processing.
Resumo:
BACKGROUND: Mild cognitive impairment (MCI) has been defined as a transitional state between normal aging and dementia. In many cases, MCI represents an early stage of developing cognitive impairment. Patients diagnosed with MCI do not meet the criteria for dementia as their general intellect and everyday activities are preserved, although minor changes in instrumental activities of daily living (ADL) may occur. However, they may exhibit significant behavioral and psychological signs and symptoms (BPS), also frequently observed in patients with Alzheimer's disease (AD). Hence, we wondered to what extent specific BPS are associated with cognitive decline in participants with MCI or AD. METHODS: Our sample consisted of 164 participants, including 46 patients with amnestic (single or multi-domain) MCI and 54 patients with AD, as well as 64 control participants without cognitive disorders. Global cognitive performance, BPS, and ADL were assessed using validated clinical methods at baseline and at two-year follow-up. RESULTS: The BPS variability over the follow-up period was more pronounced in the MCI group than in patients with AD: some BPS improve, others occur newly or worsen, while others still remain unchanged. Moreover, specific changes in BPS were associated with a rapid deterioration of the global cognitive level in MCI patients. In particular, an increase of euphoria, eating disorders, and aberrant motor behavior, as well as worsened sleep quality, predicted a decline in cognitive functioning. CONCLUSIONS: Our findings confirm a higher variability of BPS over time in the MCI group than in AD patients. Moreover, our results provide evidence of associations between specific BPS and cognitive decline in the MCI group that might suggest a risk of conversion of individuals with amnestic MCI to AD.
Resumo:
Male and female Wistar rats were treated postnatally (PND 5-16) with BSO (l-buthionine-(S,R)-sulfoximine) to provide a rat model of schizophrenia based on transient glutathione deficit. In the watermaze, BSO-treated male rats perform very efficiently in conditions where a diversity of visual information is continuously available during orientation trajectories [1]. Our hypothesis is that the treatment impairs proactive strategies anticipating future sensory information, while supporting a tight visual adjustment on memorized snapshots, i.e. compensatory reactive strategies. To test this hypothesis, BSO rats' performance was assessed in two conditions using an 8-arm radial maze task: a semi-transparent maze with no available view on the environment from maze centre [2], and a modified 2-parallel maze known to induce a neglect of the parallel pair in normal rats [3-5]. Male rats, but not females, were affected by the BSO treatment. In the semi-transparent maze, BSO males expressed a higher error rate, especially in completing the maze after an interruption. In the 2-parallel maze shape, BSO males, unlike controls, expressed no neglect of the parallel arms. This second result was in accord with a reactive strategy using accurate memory images of the contextual environment instead of a representation based on integrating relative directions. These results are coherent with a treatment-induced deficit in proactive decision strategy based on multimodal cognitive maps, compensated by accurate reactive adaptations based on the memory of local configurations. Control females did not express an efficient proactive capacity in the semi-transparent maze, neither did they show the significant neglect of the parallel arms, which might have masked the BSO induced effect. Their reduced sensitivity to BSO treatment is discussed with regard to a sex biased basal cognitive style.
Resumo:
OBJECTIVE: The prevalence of adolescent obesity has increased considerably over the past decade in Switzerland and has become a serious public health problem in Europe. Prevention of obesity using various comprehensive programmes appears to be very promising, although we must admit that several interventions had generally disappointing results compared with the objectives and target initially fixed. Holistic programmes including nutritional education combined with promotion of physical activity and behaviour modification constitute the key factors in the prevention of childhood and adolescent obesity. The purpose of this programme was to incorporate nutrition/physical education as well as psychological aspects in selected secondary schools (9th grade, 14-17 years). METHODS: The educational strategy was based on the development of a series of 13 practical workshops covering wide areas such as physical inactivity, body composition, sugar, energy density, invisible lipids, how to read food labels, is meal duration important? Do you eat with pleasure or not? Do you eat because you are hungry? Emotional eating. For teachers continuing education, a basic highly illustrated guide was developed as a companion booklet to the workshops. These materials were first validated by biology, physical education, dietician and psychologist teachers as well as school medical officers. RESULTS: Teachers considered the practical educational materials innovative and useful, motivational and easy to understand. Up to now (early 2008), the programme has been implemented in 50 classes or more from schools originating from three areas in the French part of Switzerland. Based on the 1-week pedometer value assessed before and after the 1 school-year programme, an initial evaluation indicated that overall physical placidity was significantly decreased as evidenced by a significant rise in the number of steps per day. CONCLUSION: Future evaluation will provide more information on the effectiveness of the ADOS programme.
Resumo:
Autophagy or "self eating" is frequently activated in tumor cells treated with chemotherapy or irradiation. Whether autophagy represents a survival mechanism or rather contributes to cell death remains controversial. To address this issue, the role of autophagy in radiosensitive and radioresistant human cancer cell lines in response to gamma-irradiation was examined. We found irradiation-induced accumulation of autophagosomes accompanied by strong mRNA induction of the autophagy-related genes beclin 1, atg3, atg4b, atg4c, atg5, and atg12 in each cell line. Transduction of specific target-siRNAs led to down-regulation of these genes for up to 8 days as shown by reverse transcription-PCR and Western blot analysis. Blockade of each autophagy-related gene was associated with strongly diminished accumulation of autophagosomes after irradiation. As shown by clonogenic survival, the majority of inhibited autophagy-related genes, each alone or combined, resulted in sensitization of resistant carcinoma cells to radiation, whereas untreated resistant cells but not sensitive cells survived better when autophagy was inhibited. Similarly, radiosensitization or the opposite was observed in different sensitive carcinoma cells and upon inhibition of different autophagy genes. Mutant p53 had no effect on accumulation of autophagosomes but slightly increased clonogenic survival, as expected, because mutated p53 protects cells by conferring resistance to apoptosis. In our system, short-time inhibition of autophagy along with radiotherapy lead to enhanced cytotoxicity of radiotherapy in resistant cancer cells.
Resumo:
We describe a case of experimentally induced pre-syncope in a healthy young man when exposed to increased inspired CO2 in a background of hypoxia. Acute severe hypoxia (FIO2=0.10) was tolerated, but adding CO2 to the inspirate caused pre-syncope symptoms accompanied by hypotension and large reductions in both mean and diastolic middle cerebral artery velocity, while systolic flow velocity was maintained. The mismatch of cerebral perfusion pressure and vascular tone caused unique retrograde cerebral blood flow at the end of systole and a reduction in cerebral tissue oxygenation. We speculate that this occurrence of pre-syncope was due to hypoxia-induced inhibition of brain regions responsible for compensatory sympathetic activity to relative hypercapnia.
Resumo:
Antifungal resistance of Candida species is a clinical problem in the management of diseases caused by these pathogens. In this study we identified from a collection of 423 clinical samples taken from Tunisian hospitals two clinical Candida species (Candida albicans JEY355 and Candida tropicalis JEY162) with decreased susceptibility to azoles and polyenes. For JEY355, the fluconazole (FLC) MIC was 8 μg/ml. Azole resistance in C. albicans JEY355 was mainly caused by overexpression of a multidrug efflux pump of the major facilitator superfamily, Mdr1. The regulator of Mdr1, MRR1, contained a yet-unknown gain-of-function mutation (V877F) causing MDR1 overexpression. The C. tropicalis JEY162 isolate demonstrated cross-resistance between FLC (MIC > 128 μg/ml), voriconazole (MIC > 16 μg/ml), and amphotericin B (MIC > 32 μg/ml). Sterol analysis using gas chromatography-mass spectrometry revealed that ergosterol was undetectable in JEY162 and that it accumulated 14α-methyl fecosterol, thus indicating a perturbation in the function of at least two main ergosterol biosynthesis proteins (Erg11 and Erg3). Sequence analyses of C. tropicalis ERG11 (CtERG11) and CtERG3 from JEY162 revealed a deletion of 132 nucleotides and a single amino acid substitution (S258F), respectively. These two alleles were demonstrated to be nonfunctional and thus are consistent with previous studies showing that ERG11 mutants can only survive in combination with other ERG3 mutations. CtERG3 and CtERG11 wild-type alleles were replaced by the defective genes in a wild-type C. tropicalis strain, resulting in a drug resistance phenotype identical to that of JEY162. This genetic evidence demonstrated that CtERG3 and CtERG11 mutations participated in drug resistance. During reconstitution of the drug resistance in C. tropicalis, a strain was obtained harboring only defective Cterg11 allele and containing as a major sterol the toxic metabolite 14α-methyl-ergosta-8,24(28)-dien-3α,6β-diol, suggesting that ERG3 was still functional. This strain therefore challenged the current belief that ERG11 mutations cannot be viable unless accompanied by compensatory mutations. In conclusion, this study, in addition to identifying a novel MRR1 mutation in C. albicans, constitutes the first report on a clinical C. tropicalis with defective activity of sterol 14α-demethylase and sterol Δ(5,6)-desaturase leading to azole-polyene cross-resistance.
Resumo:
Purpose: Dysmenorrhea is the leading cause of recurrent short-term school absenteeism among adolescent girls. Yet, studies of menstrual symptoms in the light of adolescent psychological background seldom appear in the recent literature. This study aims to determine whether adolescent girls with severe dysmenorrhea (SD) have different body perception on top of poorer psychological health. Methods: We analyzed data from the Swiss Multicentre Adolescent Survey on Health (SMASH 2002) among a nationally representative sample of adolescents (n = 7548; 3340 females) aged 16 to 20 years attending post-mandatory education. Dysmenorrhea was defined as presence of abdominal or back pain during menstruation on the last 12 months. The severity of dysmenorrhea was defined according to the impact on daily activity and was assessed by 3 questions on the way menstruations interfere with daily life: 1) "You feel well and have normal activities", 2)"you must stay at home" and 3) "you feel restricted in your school or professional activities". Studied variables were: depressive symptoms, suicidal attempt, sexual abuse, health perception in general, body satisfaction, desire to modify body shape, and disordered eating behavior (DEB) with restrictive or bulimic tendency. Controlling variables included socio-economic status (SES) as measured by both parent's level of education, gynecological age (age-age at menarche), academic track (student/apprentice) and age. Results: 12.4% (95% CI: 11.0-14) declared severe dysmenorrhea, 74.2% (95% CI: 71.8-76.5) mild to moderate dysmenorrhea and 13,4% (95% CI: 11.5-15.5) had no dysmenorrhea. Compared to their peers, controlling for confounding variables, subjects with SD were more numerous to report depressive symptoms (AOR: 1.73; 95% CI: 1.39-2.15), to feel in poor health (AOR: 1.44; 95% CI: 1.14-1.81). Moreover, the proportion of those reporting dissatisfaction with their body appearance was higher (AOR: 1.48; 95% CI: 1.00-2.18). Conclusion: Patients with SD not only show a different profile than their peers in terms of their mental health and health perception, but also a distinct relation to their body. Therefore clinicians should pay particular attention to patients with SD and offer them a global evaluation keeping in mind what can be associated with SD.
Resumo:
There has been broad concern that arsenic in the environment exerts neurotoxicity. To determine the mechanism by which arsenic disrupts neuronal development, primary cultured neurons obtained from the cerebral cortex of mouse embryos were exposed to sodium arsenite (NaAsO2) at concentrations between 0 and 2μM from days 2 to 4 in vitro and cell survival, neurite outgrowth and expression of glutamate AMPA receptor subunits were assessed at day 4 in vitro. Cell survival was significantly decreased by exposure to 2μM NaAsO2, whereas 0.5μM NaAsO2 increased cell survival instead. The assessment of neurite outgrowth showed that total neurite length was significantly suppressed by 1μM and 2μM NaAsO2, indicating that the lower concentration of NaAsO2 impairs neuritogenesis before inducing cell death. Immunoblot analysis of AMPA receptor subunit expression showed that the protein level of GluA1, a specific subunit of the AMPA receptor, was significantly decreased by 1μM and 2μM NaAsO2. When immunocytochemistry was used to confirm this effect by staining for GluA1 expression in neuropeptide Y neurons, most of which contain GluA1, GluA1 expression in neuropeptide Y neurons was found to be significantly suppressed by 1μM and 2μM NaAsO2 but to be increased at the concentration of 0.5μM. Finally, to determine whether neurons could be rescued from the NaAsO2-induced impairment of neuritogenesis by compensatory overexpression of GluA1, we used primary cultures of neurons transfected with a plasmid vector to overexpress either GluA1 or GluA2, and the results showed that GluA1/2 overexpression protected against the deleterious effects of NaAsO2 on neurite outgrowth. These results suggest that the NaAsO2 concentration inducing neurite suppression is lower than the concentration that induces cell death and is the same as the concentration that suppresses GluA1 expression. Consequently, the suppression of GluA1 expression by NaAsO2 seems at least partly responsible for neurite suppression induced by NaAsO2.