164 resultados para Clauert, Hans, d. 1566.
Resumo:
Abstract: To have an added value over BMD, a CRF of osteoporotic fracture must be predictable of the fracture, independent of BMD, reversible and quantifiable. Many major recognized CRF exist.Out of these factorsmany of themare indirect factor of bone quality. TBS predicts fracture independently of BMD as demonstrated from previous studies. The aim of the study is to verify if TBS can be considered as a major CRF of osteoporotic fracture. Existing validated datasets of Caucasian women were analyzed. These datasets stem from different studies performed by the authors of this report or provided to our group. However, the level of evidence of these studies will vary. Thus, the different datasets were weighted differently according to their design. This meta-like analysis involves more than 32000 women (≥50 years) with 2000 osteoporotic fractures from two prospective studies (OFELY&MANITOBA) and 7 crosssectional studies. Weighted relative risk (RR) for TBS was expressed for each decrease of one standard deviation as well as per tertile difference (TBS=1.300 and 1.200) and compared with those obtained for the major CRF included in FRAX®. Overall TBS RR obtained (adjusted for age) was 1.79 [95%CI-1.37-2.37]. For all women combined, RR for fracture for the lowest comparedwith themiddle TBS tertilewas 1.55[1.46- 1.68] and for the lowest compared with the highest TBS tertile was 2.8[2.70-3.00]. TBS is comparable to most of the major CRF (Fig 1) and thus could be used as one of them. Further studies have to be conducted to confirm these first findings.
Resumo:
We investigated the association of trabecular bone score (TBS) with microarchitecture and mechanical behavior of human lumbar vertebrae. We found that TBS reflects vertebral trabecular microarchitecture and is an independent predictor of vertebral mechanics. However, the addition of TBS to areal BMD (aBMD) did not significantly improve prediction of vertebral strength. INTRODUCTION: The trabecular bone score (TBS) is a gray-level measure of texture using a modified experimental variogram which can be extracted from dual-energy X-ray absorptiometry (DXA) images. The current study aimed to confirm whether TBS is associated with trabecular microarchitecture and mechanics of human lumbar vertebrae, and if its combination with BMD improves prediction of fracture risk. METHODS: Lumbar vertebrae (L3) were harvested fresh from 16 donors. The anteroposterior and lateral bone mineral content (BMC) and areal BMD (aBMD) of the vertebral body were measured using DXA; then, the TBS was extracted using TBS iNsight software (Medimaps SA, France). The trabecular bone volume (Tb.BV/tissue volume, TV), trabecular thickness (Tb.Th), degree of anisotropy, and structure model index (SMI) were measured using microcomputed tomography. Quasi-static uniaxial compressive testing was performed on L3 vertebral bodies to assess failure load and stiffness. RESULTS: The TBS was significantly correlated to Tb.BV/TV and SMI (râeuro0/00=âeuro0/000.58 and -0.62; pâeuro0/00=âeuro0/000.02, 0.01), but not related to BMC and BMD. TBS was significantly correlated with stiffness (râeuro0/00=âeuro0/000.64; pâeuro0/00=âeuro0/000.007), independently of bone mass. Using stepwise multiple regression models, we failed to demonstrate that the combination of BMD and TBS was better at explaining mechanical behavior than either variable alone. However, the combination TBS, Tb.Th, and BMC did perform better than each parameter alone, explaining 79 % of the variability in stiffness. CONCLUSIONS: In our study, TBS was associated with microarchitecture parameters and with vertebral mechanical behavior, but TBS did not improve prediction of vertebral biomechanical properties in addition to aBMD.
Resumo:
INTRODUCTION: Although osteoporosis is considered a disease of women, 25% of the individuals with osteoporosis are men. BMD measurement by DXA is the gold standard used to diagnose osteoporosis and assess fracture risk. Nevertheless, BMD does not take into account alterations of microarchitecture. TBS is an index of bone microarchitecture extracted from the spine DXA. Previous studies have reported the ability of the spine TBS to predict osteoporotic fractures in women. This is the first case-controlled study in men to evaluate the potential diagnostic value of TBS as a complement to bone mineral density (BMD), by comparing men with and without fractures. METHODS: To be eligible for this study, subjects had to be non-Hispanic US white men aged 40 and older. Furthermore, subjects were excluded if they have or have had previously any treatment or illness that may influence bone metabolism. Fractured subjects were included if the presence of at least one fracture was confirmed. Cases were matched for age (±3 years) and BMD (±0.04 g/cm(2)) with three controls. BMD and TBS were first retrospectively evaluated at AP spine (L1-L4) with a Prodigy densitometer (GE-Lunar, Madison, USA) and TBS iNsight® (Med-Imaps, France) in Lausanne University Hospital blinded from clinical outcome. Inter-group comparisons were undertaken using Student's t-tests or Wilcoxon signed rank tests. Odds ratios were calculated per one standard deviation decrease as well as areas under the receiver operating curve (AUC). RESULTS: After applying inclusion/exclusion criteria, a group of 180 male subjects was obtained. This group consists of 45 fractured subjects (age=63.3±12.6 years, BMI=27.1±4.2 kg/m(2)) and 135 control subjects (age=62.9±11.9 years, BMI=26.7±3.9 kg/m(2)) matched for age (p=0.86) and BMD (p=0.20). A weak correlation was obtained between TBS and BMD and between TBS and BMI (r=0.27 and r=-0.28, respectively, p<0.01). Subjects with fracture have a significant lower TBS compared to control subjects (p=0.013), whereas no differences were obtained for BMI, height and weight (p>0.10). TBS OR per standard deviation is 1.55 [1.09-2.20] for all fracture type. When considering vertebral fracture only TBS OR reached 2.07 [1.14-3.74]. CONCLUSION: This study showed the potential use of TBS in men. TBS revealed a significant difference between fractured and age- and spine BMD-matched nonfractured subjects. These results are consistent with those previously reported on for men of other nationalities.
Resumo:
Comme technique alternative à la densitométrie osseuse par rayons-X (DXA), l'ultrason quantitatif (USQ) prend un intérêt de plus en plus important, pour l'évaluation osseuse non invasive du risque fracturaire d'origine ostéoporotique. Bien que l'USQ soit reconnu sur le plan scientifique dans le management de l'ostéoporose par de nombreuses sociétés internationales, il devient urgent de définir une stratégie d'utilisation clinique pratique. Dans cet article, plusieurs approches ont été évoquées, soulignant les avantages et inconvénients de chacune d'entre elles. Cependant, le coeur de cette article porte sur des recommandations opérationnelles pour l'utilisation de 2 appareil USQ, vendus en Suisse, dans le management de l'ostéoporose. Cette approche prend en compte les recommandations de l'Association Suisse contre l'Ostéoporose en terme de facteurs de risques ainsi que les indications officielles pour l'examen DXA conventionnel. [Ed.]
Resumo:
Treatment effects over 2 years of teriparatide vs. ibandronate in postmenopausal women with osteoporosis were compared using lumbar spine bone mineral density (BMD) and trabecular bone score (TBS). Teriparatide induced larger increases in BMD and TBS compared to ibandronate, suggesting a more pronounced effect on bone microarchitecture of the bone anabolic drug. INTRODUCTION: The trabecular bone score (TBS) is an index of bone microarchitecture, independent of bone mineral density (BMD), calculated from anteroposterior spine dual X-ray absorptiometry (DXA) scans. The potential role of TBS for monitoring treatment response with bone-active substances is not established. The aim of this study was to compare the effects of recombinant human 1-34 parathyroid hormone (teriparatide) and the bisphosphonate ibandronate (IBN), on lumbar spine (LS) BMD and TBS in postmenopausal women with osteoporosis. METHODS: Two patient groups with matched age, body mass index (BMI), and baseline LS BMD, treated with either daily subcutaneous teriparatide (N = 65) or quarterly intravenous IBN (N = 122) during 2 years and with available LS BMD measurements at baseline and 2 years after treatment initiation were compared. RESULTS: Baseline characteristics (overall mean ± SD) were similar between groups in terms of age 67.9 ± 7.4 years, body mass index 23.8 ± 3.8 kg/m(2), BMD L1-L4 0.741 ± 0.100 g/cm(2), and TBS 1.208 ± 0.100. Over 24 months, teriparatide induced a significantly larger increase in LS BMD and TBS than IBN (+7.6 % ± 6.3 vs. +2.9 % ± 3.3 and +4.3 % ± 6.6 vs. +0.3 % ± 4.1, respectively; P < 0.0001 for both). LS BMD and TBS were only weakly correlated at baseline (r (2) = 0.04) with no correlation between the changes in BMD and TBS over 24 months. CONCLUSIONS: In postmenopausal women with osteoporosis, a 2-year treatment with teriparatide led to a significantly larger increase in LS BMD and TBS than IBN, suggesting that teriparatide had more pronounced effects on bone microarchitecture than IBN.
Resumo:
Introduction. - Le TBS ou Score Trabéculaire Osseux (TBS, Med- Imaps, France) est un index d'architecture osseuse apportant des informations indépendantes de la densité minérale osseuse (DMO), et calculé par la quantification des variations locales des niveaux de gris à partir d'examen de densitométrie (DXA) lombaire. Dans des études antérieures prospectives et cas-témoins, cet index a été considéré comme associé aux fractures. Nous avons comparé les effets du ranélate de strontium (RanSr) et de l'alendronate (ALN) sur l'architecture vertébrale à l'aide du TBS, chez des femmes ostéoporotiques ménopausées. Patients et méthodes. - Une analyse post hoc a été réalisée sur des DXA (Hologic and GE Lunar Devices) de 79 des 189 femmes incluses dans une étude en double aveugle et double placebo et réparties de façon randomisée entre un groupe à 2 g/jour de RanSr et un groupe à 70 mg/semaine d'ALN pendant 2 ans. Les paramètres de TBS ont été évalués en aveugle par TBS iNsight (v1,9) au niveau vertébral après 12 et 24 mois de traitement. Nous avons appliqué les règles de l'ISCD (International Society for Clinical Densitometry) pour chaque exclusion de vertèbre, de façon indépendante respectivement pour la DMO et le TBS. Des doubles mesures ayant été réalisées initialement, la reproductibilité est exprimée en % CV. Résultats. - Les caractéristiques initiales (moyenne ± DS) étaient identiques entre les groupes en termes d'âge, 69,2 ± 4,4 ans ; d'IMC, 23,8 ± 4,4 kg/m2 ; de T-score L1-L4, - 2,9 ± 0,9 et de TBS, 1,230 ± 0,09. Comme prévu, le coefficient de détermination entre la DMO et le TBS au niveau du rachis était très basse r2 = 0,12. Les reproductibilités brutes étaient respectivement de 1,1 et 1,6 % pour la DMO et le TBS au niveau vertébral. Après 1 et 2 ans, la DMO en L1-L4 a augmenté de façon significative de respectivement 5,6 % et 9 % dans le groupe RanSr et de respectivement 5,2 % et 7,6 % dans le groupe ALN. De même, le TBS au niveau vertébral a augmenté respectivement de 2,3 % (p < 0,001) et de 3,1 % (p < 0,001) dans le groupe RanSr et de 0,5 % (NS) et de 1 % (NS) dans le groupe ALN avec une différence entre groupe significative en faveur du RanSr (p = 0,04 et p = 0,03). Il n'y avait aucune corrélation entre la différence de DMO et de TBS à 1 ou 2 ans. Les deux traitements étaient bien tolérés. Discussion. - Ces résultats sur le TBS confortent des études précédentes qui sont en faveur de l'effet bénéfique du RanSr sur l'architecture osseuse. Conclusion. - Le ranélate de strontium a des effets plus importants que l'alendronate sur le score trabéculaire osseux, indice d'architecture osseuse au niveau vertébral, chez les femmes ayant une ostéoporose post-ménopausique, après 2 ans de traitement.
Resumo:
The trabecular bone score (TBS) is an index of bone microarchitectural texture calculated from anteroposterior dual-energy X-ray absorptiometry (DXA) scans of the lumbar spine (LS) that predicts fracture risk, independent of bone mineral density (BMD). The aim of this study was to compare the effects of yearly intravenous zoledronate (ZOL) versus placebo (PLB) on LS BMD and TBS in postmenopausal women with osteoporosis. Changes in TBS were assessed in the subset of 107 patients recruited at the Department of Osteoporosis of the University Hospital of Berne, Switzerland, who were included in the HORIZON trial. All subjects received adequate calcium and vitamin D3. In these patients randomly assigned to either ZOL (n = 54) or PLB (n = 53) for 3 years, BMD was measured by DXA and TBS assessed by TBS iNsight (v1.9) at baseline and 6, 12, 24, and 36 months after treatment initiation. Baseline characteristics (mean ± SD) were similar between groups in terms of age, 76.8 ± 5.0 years; body mass index (BMI), 24.5 ± 3.6 kg/m(2) ; TBS, 1.178 ± 0.1 but for LS T-score (ZOL-2.9 ± 1.5 versus PLB-2.1 ± 1.5). Changes in LS BMD were significantly greater with ZOL than with PLB at all time points (p < 0.0001 for all), reaching +9.58% versus +1.38% at month 36. Change in TBS was significantly greater with ZOL than with PLB as of month 24, reaching +1.41 versus-0.49% at month 36; p = 0.031, respectively. LS BMD and TBS were weakly correlated (r = 0.20) and there were no correlations between changes in BMD and TBS from baseline at any visit. In postmenopausal women with osteoporosis, once-yearly intravenous ZOL therapy significantly increased LS BMD relative to PLB over 3 years and TBS as of 2 years. © 2013 American Society for Bone and Mineral Research.
Resumo:
INTRODUCTION: In November 2009, the "3rd Summit on Osteoporosis-Central and Eastern Europe (CEE)" was held in Budapest, Hungary. The conference aimed to tackle issues regarding osteoporosis management in CEE identified during the second CEE summit in 2008 and to agree on approaches that allow most efficient and cost-effective diagnosis and therapy of osteoporosis in CEE countries in the future. DISCUSSION: The following topics were covered: past year experience from FRAX® implementation into local diagnostic algorithms; causes of secondary osteoporosis as a FRAX® risk factor; bone turnover markers to estimate bone loss, fracture risk, or monitor therapies; role of quantitative ultrasound in osteoporosis management; compliance and economical aspects of osteoporosis; and osteoporosis and genetics. Consensus and recommendations developed on these topics are summarised in the present progress report. CONCLUSION: Lectures on up-to-date data of topical interest, the distinct regional provenances of the participants, a special focus on practical aspects, intense mutual exchange of individual experiences, strong interest in cross-border cooperations, as well as the readiness to learn from each other considerably contributed to the establishment of these recommendations. The "4th Summit on Osteoporosis-CEE" held in Prague, Czech Republic, in December 2010 will reveal whether these recommendations prove of value when implemented in the clinical routine or whether further improvements are still required.
Resumo:
Introduction. - L'ostéoporose est caractérisée par une diminution de la DMO et une altération de la microarchitecture (MA). La MA est évaluable en routine clinique par la mesure du Trabecular Bone Score (TBS), par simple ré-analyse de l'image lombaire de la DMO. Le TBS a démontré sa valeur diagnostique et pronostique, partiellement indépendante des FRC et le la DMO. Le but de la cohorte OsteoLaus est de combiner en routine clinique les FRC et les informations données par la DXA (DMO, TBS, VFA) et FRAX pour mieux identifier les femmes à risque de fracture. Matériels et Méthodes. - Dans la cohorte OsteoLaus (1 500 femmes, 50 à 80 ans, Lausanne, Suisse) les FRC, la DMO lombaire et de la hanche, l'IVA, le TBS et le FRAX sont relevés. La sensibilité et la spécificité des différents outils pour prédire les fractures vertébrales (FxV) de grade 2/3 ont été calculées. Résultats. - Nous avons inclus 451 femmes : âge 67,4 ± 6,7 ans, IMC 26,1 ± 4,6, DMO lombaire 0,943 ± 0,168 (T-score -1,4 SD), TBS 1,271 ± 0,103. La corrélation entre DMO et TBS est faible (r2 = 0,16). La prévalence des FxV 2/3 est de 9,3 %. Conclusion. - L'IMC a un mauvais pouvoir discriminant dans notre cohorte. Ces résultats préliminaires confirment l'indépendance partielle entre le TBS et la DMO. Une approche combinant TBS et FRAX semble être le meilleur compromis en termes de sensibilité/spécificité pour identifier les femmes avec une FxV 2/3 prévalente qui aurait pu être mal classifiée par la DMO ou le TBS ou le FRAX seuls.
Resumo:
The trabecular bone score (TBS) is a new parameter that is determined from gray-level analysis of dual-energy X-ray absorptiometry (DXA) images. It relies on the mean thickness and volume fraction of trabecular bone microarchitecture. This was a preliminary case-control study to evaluate the potential diagnostic value of TBS as a complement to bone mineral density (BMD), by comparing postmenopausal women with and without fractures. The sample consisted of 45 women with osteoporotic fractures (5 hip fractures, 20 vertebral fractures, and 20 other types of fracture) and 155 women without a fracture. Stratification was performed, taking into account each type of fracture (except hip), and women with and without fractures were matched for age and spine BMD. BMD and TBS were measured at the total spine. TBS measured at the total spine revealed a significant difference between the fracture and age- and spine BMD-matched nonfracture group, when considering all types of fractures and vertebral fractures. In these cases, the diagnostic value of the combination of BMD and TBS likely will be higher compared with that of BMD alone. TBS, as evaluated from standard DXA scans directly, potentially complements BMD in the detection of osteoporotic fractures. Prospective studies are necessary to fully evaluate the potential role of TBS as a complementary risk factor for fracture.
Resumo:
Developing a novel technique for the efficient, noninvasive clinical evaluation of bone microarchitecture remains both crucial and challenging. The trabecular bone score (TBS) is a new gray-level texture measurement that is applicable to dual-energy X-ray absorptiometry (DXA) images. Significant correlations between TBS and standard 3-dimensional (3D) parameters of bone microarchitecture have been obtained using a numerical simulation approach. The main objective of this study was to empirically evaluate such correlations in anteroposterior spine DXA images. Thirty dried human cadaver vertebrae were evaluated. Micro-computed tomography acquisitions of the bone pieces were obtained at an isotropic resolution of 93μm. Standard parameters of bone microarchitecture were evaluated in a defined region within the vertebral body, excluding cortical bone. The bone pieces were measured on a Prodigy DXA system (GE Medical-Lunar, Madison, WI), using a custom-made positioning device and experimental setup. Significant correlations were detected between TBS and 3D parameters of bone microarchitecture, mostly independent of any correlation between TBS and bone mineral density (BMD). The greatest correlation was between TBS and connectivity density, with TBS explaining roughly 67.2% of the variance. Based on multivariate linear regression modeling, we have established a model to allow for the interpretation of the relationship between TBS and 3D bone microarchitecture parameters. This model indicates that TBS adds greater value and power of differentiation between samples with similar BMDs but different bone microarchitectures. It has been shown that it is possible to estimate bone microarchitecture status derived from DXA imaging using TBS.