84 resultados para Chemical spray pyrolysis (CSP)
Resumo:
Cet article décrit, à l'intention des mdéecins de rpremier recours, les principes de base d'une action de secours lors d'un attentat (ou d'un accident) chimique impliquant de nombreuses victimes intoxiquées et/ou contaminées.
Resumo:
Here we report the case of a 70-year-old woman who committed suicide by cyanide poisoning. During resuscitation cares, she underwent an antidote treatment by hydroxocobalamin. Postmortem investigations showed marked bright pink discolouration of organs and fluids, and a lethal cyanide blood concentration of 43 mg/L was detected by toxicological investigation. Discolouration of hypostasis and organs has widely been studied in forensic literature. In our case, we interpreted the unusual pink coloration as the result of the presence of hydroxocobalamin. This substance is a known antidote against cyanide poisoning, indicated because of its efficiency and poor adverse effects. However, its main drawback is to interfere with measurements of many routine biochemical parameters. We have tested the potential influence of this molecule in some routine postmortem investigations. The results are discussed.
Resumo:
The N-terminal domain of the circumsporozoite protein (CSP) has been largely neglected in the search for a malaria vaccine in spite of being a target of inhibitory antibodies and protective T cell responses in mice. Thus, in order to develop this region as a vaccine candidate to be eventually associated with other candidates and, in particular, with the very advanced C-terminal counterpart, synthetic constructs representing N- and C-terminal regions of Plasmodium falciparum and Plasmodium berghei CSP were administered as single or combined formulations in mice. We show that the antisera generated against the combinations inhibit sporozoite invasion of hepatocytes in vitro better than antisera against single peptides. Furthermore, two different P. falciparum CSP N-terminal constructs (PfCS22-110 and PfCS65-110) were recognized by serum samples from people living in malaria-endemic regions. Importantly, recognition of the short N-terminal peptide (PfCS65-110) by sera from children living in a malaria-endemic region was associated with protection from disease. Taken together, these results underline the potential of using such fragments as malaria vaccine candidates.
Resumo:
Early detection of pathophysiological factors associated with permanent brain damage is a major issue in neonatal medicine. The aim of our study was to evaluate the significance of the CO2 reactivity of cerebral blood flow (CBF) in neonates with perinatal risk factors. Fourteen ventilated neonates with perinatal risk factors (pathological cardiotocogramm, low cord pH, postpartal encephalopathy) were enrolled into this prospective study. The study was performed 18-123 h after birth. CBF was measured using the noninvasive intravenous 133Xe method. Two measurements were taken with a minimal PaCO2-difference of 5 mm Hg. From the two CBF values the CO2 reactivity was calculated. Outcome was evaluated 1 year after birth. The CBF values at a lower PaCO2 ranged from 6.6 to 115. 2 ml/100 g brain issue/min (median = 18.2) and at a higher PaCO2 level from 7.1 to 125.7 ml/100 g brain tissue/min (median = 18.75). The calculated CO2 reactivity ranged from -9.6 to 6.6% (median 1.1%) change in CBF/mm Hg change in PaCO2. CO2 reactivity correlated with lowest pH (r2 = 0.35, p = 0.02). Two infants died, one of neonatal sepsis, the other of heart failure. Neurological outcome at the age of 1 year was normal in 11 patients, 1 had severe cerebral palsy. From the 12 surviving patients the patient with severe neurological deficit showed the highest CBF values (125.7 ml/100 g/min). Impaired chemical coupling of cerebral blood flow is compatible with intact neurological outcome in neonates with perinatal risk factors. CO2 reactivity in these newborns correlates with the lowest pH and may reflect the severity of perinatal asphyxia.
Resumo:
One target of protective immunity against the Plasmodium liver stage in BALB/c mice is represented by the circumsporozoite protein (CSP), and mainly involves its recognition by IFN-γ producing specific CD8+T-cells. In a previous in vitro study we showed that primary hepatocytes from BALB/c mice process Plasmodium berghei (Pb) CSP (PbCSP) and present CSP-derived peptides to specific H-2k(d) restricted CD8+T-cells with subsequent killing of the presenting cells. We now extend these observations to an in vivo infection model in which infected hepatocytes and antigen specific T-cell clones are transferred into recipient mice inducing protection from sporozoite (SPZ) challenge. In addition, using a similar protocol, we suggest the capacity of hepatocytes in priming of naïve T-cells to provide protection, as further confirmed by induction of protection after depletion of cross-presenting dendritic cells (DCs) by cytochrome c (cyt c) treatment or using traversal deficient parasites. Our results clearly show that hepatocytes present Plasmodium CSP to specific-primed CD8+T-cells, and could also prime naïve T-cells, leading to protection from infection. These results could contribute to a better understanding of liver stage immune response and design of malaria vaccines.
Resumo:
Raman spectroscopy combined with chemometrics has recently become a widespread technique for the analysis of pharmaceutical solid forms. The application presented in this paper is the investigation of counterfeit medicines. This increasingly serious issue involves networks that are an integral part of industrialized organized crime. Efficient analytical tools are consequently required to fight against it. Quick and reliable authentication means are needed to allow the deployment of measures from the company and the authorities. For this purpose a method in two steps has been implemented here. The first step enables the identification of pharmaceutical tablets and capsules and the detection of their counterfeits. A nonlinear classification method, the Support Vector Machines (SVM), is computed together with a correlation with the database and the detection of Active Pharmaceutical Ingredient (API) peaks in the suspect product. If a counterfeit is detected, the second step allows its chemical profiling among former counterfeits in a forensic intelligence perspective. For this second step a classification based on Principal Component Analysis (PCA) and correlation distance measurements is applied to the Raman spectra of the counterfeits.
Resumo:
The chemical and isotopic composition of fumarolic gases emitted from Nisyros Volcano, Greece, and of a single gas sample from Vesuvio, Italy, was investigated in order to determine the origin of methane (CH,) within two subduction-related magmatic-hydrothermal environments. Apparent temperatures derived from carbon isotope partitioning between CH4 and CO2 of around 340degreesC for Nisyros and 470degreesC for Vesuvio correlate well with aquifer temperatures as measured directly and/or inferred from compositional data using the H2O-H-2-CO2-CO-CH4 geothermometer. Thermodynamic modeling reveals chemical equilibrium between CH4, CO2 and H2O implying that carbon isotope partitioning between CO2 and CH, in both systems is controlled by aquifer temperature. N-2/(3) He and CH4/(3) He ratios of Nisyros fumarolic gases are unusually low for subduction zone gases and correspond to those of midoceanic ridge environments. Accordingly, CH4 may have been primarily generated through the reduction of CO, by H, in the absence of any organic matter following a Fischer-Tropsch-type reaction. However, primary occurrence of minor amounts of thermogenic CH4 and subsequent re-equilibration with co-existing CO2 cannot be ruled out entirely- CO2/He-3 ratios and delta(13)C(CO2) values imply that the evolved CO2 either derives from a metasomatized mantle or is a mixture between two components, one outgassing from an unaltered mantle and the other released by thermal breakdown of marine carbonates. The latter may contain traces of organic matter possibly decomposing to CH4 during thermometamorphism. Copyright (C) 2004 Elsevier Ltd.
Resumo:
Airborne particles can come from a variety of sources and contain variable chemical constituents. Some particles are formed by natural processes, such as volcanoes, erosion, sea spray, and forest fires, while other are formed by anthropogenic processes, such as industrial- and motor vehicle-related combustion, road-related wear, and mining. In general, larger particles (those greater than 2.5 μm) are formed by mechanical processes, while those less than 2.5 μm are formed by combustion processes. The chemical composition of particles is highly influenced by the source: for combustion-related particles, factors such as temperature of combustion, fuel type, and presence of oxygen or other gases can also have a large impact on PM composition. These differences can often be observed at a regional level, such as the greater sulphate-composition of PM in regions that burn coal for electricity production (which contains sulphur) versus regions that do not. Most countries maintain air monitoring networks, and studies based on the resulting data are the most common basis for epidemiology studies on the health effects of PM. Data from these monitoring stations can be used to evaluate the relationship between community-level exposure to ambient particles and health outcomes (i.e., morbidity or mortality from various causes). Respiratory and cardiovascular outcomes are the most commonly assessed, although studies have also considered other related specific outcomes such as diabetes and congenital heart disease. The data on particle characteristics is usually not very detailed and most often includes some combination of PM2.5, PM10, sulphate, and NO2. Other descriptors that are less commonly found include particle number (ultrafine particles), metal components of PM, local traffic intensity, and EC/OC. Measures of association are usually reported per 10 μg/m3 or interquartile range increase in pollutant concentration. As the exposure data are taken from regional monitoring stations, the measurements are not representative of an individual's exposure. Particle size is an important descriptor for understanding where in the human respiratory system the particles will deposit: as a general rule, smaller particles penetrate to deeper regions of the lungs. Initial studies on the health effects of particulate matter focused on mass of the particles, including either all particles (often termed total suspended particulate or TSP) or PM10 (all particles with an aerodynamic diameter less than 10 μm). More recently, studies have considered both PM10 and PM2.5, with the latter corresponding more directly to combustion-related processes. UFPs are a dominant source of particles in terms of PNC, yet are negligible in terms of mass. Very few epidemiology studies have measured the effect of UFPs on health; however, the numbers of studies on this topic are increasing. In addition to size, chemical composition is of importance when understanding the toxicity of particles. Some studies consider the composition of particles in addition to mass; however this is not common, in part due the cost and labour involved in such analyses.
Resumo:
Patients undergoing spinal surgery are at risk of developing thromboembolic complications even though lower incidences have been reported as compared to joint arthroplasty surgery. Deep vein thrombosis (DVT) has been studied extensively in the context of spinal surgery but symptomatic pulmonary embolism (PE) has engaged less attention. We prospectively followed a consecutive cohort of 270 patients undergoing spinal surgery at a single institution. From these patients, only 26 were simple discectomies, while the largest proportion (226) was fusions. All patients received both low molecular weight heparin (LMWH) initiated after surgery and compressive stockings. PE was diagnosed with spiral chest CT. Six patients developed symptomatic PE, five during their hospital stay. In three of the six patients the embolic event occurred during the first 3 postoperative days. They were managed by the temporary insertion of an inferior vena cava (IVC) filter thus allowing for a delay in full-dose anticoagulation until removal of the filter. None of the PE patients suffered any bleeding complication as a result of the introduction of full anticoagulation. Two patients suffered postoperative haematomas, without development of neurological symptoms or signs, requiring emergency evacuation. The overall incidence of PE was 2.2% rising to 2.5% after exclusion of microdiscectomy cases. The incidence of PE was highest in anterior or combined thoracolumbar/lumbar procedures (4.2%). There is a large variation in the reported incidence of PE in the spinal literature. Results from the only study found in the literature specifically monitoring PE suggest an incidence of PE as high as 2.5%. Our study shows a similar incidence despite the use of LMWH. In the absence of randomized controlled trials (RCT) it is uncertain if this type of prophylaxis lowers the incidence of PE. However, other studies show that the morbidity of LMWH is very low. Since PE can be a life-threatening complication, LMWH may be a worthwhile option to consider for prophylaxis. RCTs are necessary in assessing the efficacy of DVT and PE prophylaxis in spinal patients.
Resumo:
The present work describes a fast gas chromatography/negative-ion chemical ionization tandem mass spectrometric assay (Fast GC/NICI-MS/MS) for analysis of tetrahydrocannabinol (THC), 11-hydroxy-tetrahydrocannabinol (THC-OH) and 11-nor-9-carboxy-tetrahydrocannabinol (THC-COOH) in whole blood. The cannabinoids were extracted from 500 microL of whole blood by a simple liquid-liquid extraction (LLE) and then derivatized by using trifluoroacetic anhydride (TFAA) and hexafluoro-2-propanol (HFIP) as fluorinated agents. Mass spectrometric detection of the analytes was performed in the selected reaction-monitoring mode on a triple quadrupole instrument after negative-ion chemical ionization. The assay was found to be linear in the concentration range of 0.5-20 ng/mL for THC and THC-OH, and of 2.5-100 ng/mL for THC-COOH. Repeatability and intermediate precision were found less than 12% for all concentrations tested. Under standard chromatographic conditions, the run cycle time would have been 15 min. By using fast conditions of separation, the assay analysis time has been reduced to 5 min, without compromising the chromatographic resolution. Finally, a simple approach for estimating the uncertainty measurement is presented.
Resumo:
Salt and heat stresses, which are often combined in nature, induce complementing defense mechanisms. Organisms adapt to high external salinity by accumulating small organic compounds known as osmolytes, which equilibrate cellular osmotic pressure. Osmolytes can also act as "chemical chaperones" by increasing the stability of native proteins and assisting refolding of unfolded polypeptides. Adaptation to heat stress depends on the expression of heat-shock proteins, many of which are molecular chaperones, that prevent protein aggregation, disassemble protein aggregates, and assist protein refolding. We show here that Escherichia coli cells preadapted to high salinity contain increased levels of glycine betaine that prevent protein aggregation under thermal stress. After heat shock, the aggregated proteins, which escaped protection, were disaggregated in salt-adapted cells as efficiently as in low salt. Here we address the effects of four common osmolytes on chaperone activity in vitro. Systematic dose responses of glycine betaine, glycerol, proline, and trehalose revealed a regulatory effect on the folding activities of individual and combinations of chaperones GroEL, DnaK, and ClpB. With the exception of trehalose, low physiological concentrations of proline, glycerol, and especially glycine betaine activated the molecular chaperones, likely by assisting local folding in chaperone-bound polypeptides and stabilizing the native end product of the reaction. High osmolyte concentrations, especially trehalose, strongly inhibited DnaK-dependent chaperone networks, such as DnaK+GroEL and DnaK+ClpB, likely because high viscosity affects dynamic interactions between chaperones and folding substrates and stabilizes protein aggregates. Thus, during combined salt and heat stresses, cells can specifically control protein stability and chaperone-mediated disaggregation and refolding by modulating the intracellular levels of different osmolytes.
Resumo:
Eight patients with colloid cysts of the third ventricle were examined with CT and MR. In six, surgical resection was performed and the material was subjected to histologic evaluation; the concentrations of trace elements were determined by particle-induced X-ray emission. Stereotaxic aspiration was performed in two. The investigation showed that colloid cysts are often iso- or hypodense relative to brain on CT (5/8), but sometimes have a center of increased density. Increased density did not correlate with increased concentration of calcium or other metals but did not correlate with high cholesterol content. Colloid cysts appear more heterogeneous on MR (6/8) than on CT (3/8), despite a homogeneous appearance at histology. High signal on short TR/TE sequences is correlated with a high cholesterol content. A marked shortening of the T2 relaxation time is often noticed in the central part of the cyst. Analysis of trace elements showed that this phenomenon is not related to the presence of metals with paramagnetic effects. Our analysis of the contents of colloid cysts does not support the theory that differing metallic concentrations are responsible for differences in MR signal intensity or CT density. We did find that increased CT density and high MR signal correlated with high cholesterol content.
Resumo:
For the first time in Finland, the chemical profiling of cocaine specimens was performed at the National Bureau of Investigation (NBI). The main goals were to determine the chemical composition of cocaine specimens sold in the Finnish market and to study the distribution networks of cocaine in order to provide intelligence related to its trafficking. An analytical methodology enabling through one single GC-MS injection the determination of the added cutting agents (adulterants and diluents), the cocaine purity and the chemical profile (based on the major and minor alkaloids) for each specimen was thus implemented and validated. The methodology was found to be efficient for the discrimination between specimens coming from the same source and specimens coming from different sources. The results highlighted the practical utility of the chemical profiling, especially for supporting the investigation through operational intelligence and improving the knowledge related to the cocaine trafficking through strategic intelligence.