162 resultados para Changes in society


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an integrated work based on calcareous nannofossil and benthic foraminiferal assemblages, and geochemical analyses of two Upper Pliensbachian-Lower Toarcian sections located in the central-South France. The studied sections, Tournadous and Saint-Paul-des-Fonts, represent the proximal and the distal part, respectively, of the Jurassic Causses Basin, one of the small, partly enclosed basins belonging to the epicontinental shelf of the NW Tethys. At the transition from Late Pliensbachian to Early Toarcian, the Causses Basin recorded an emersion in response to the global sea-level fall. Our data indicate severe environmental conditions of marine waters, including salinity decrease and anoxia development, occurring in the Early Toarcian. The acme of this deterioration coincides with the Early Toarcian Anoxic Event (T-OAE) but, due to the restricted nature of the basin. anoxia persisted until the end of the Early Toarcian. mainly in the deeper parts of the basin. The micronutrients and organic organic-matter fluxes were probably high during the entire studied time interval, as shown by nannofossil and foraminiferal assemblages. However, nannoplankton production drastically decreased during the T-OAE, as demonstrated by very low nannofossil fluxes, and only taxa tolerant to low-saline surface waters could thrive. At the same time, benthic foraminifers temporarily disappeared in response to sea-bottom anoxia. Our study demonstrates that environmental changes related to the T-OAE are well-recorded even in small, partly enclosed basins of NW Europe, like the Causses Basin. Within this area, the effects of global changes. like sea sea-level and temperature fluctuations, are modulated by local conditions mainly controlled by the morphology of the basin. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land plants need precise thermosensors to timely establish molecular defenses in anticipation of upcoming noxious heat waves. The plasma membrane-embedded cyclic nucleotide-gated Ca(2+) channels (CNGCs) can translate mild variations of membrane fluidity into an effective heat shock response, leading to the accumulation of heat shock proteins (HSP) that prevent heat damages in labile proteins and membranes. Here, we deleted by targeted mutagenesis the CNGCd gene in two Physcomitrella patens transgenic moss lines containing either the heat-inducible HSP-GUS reporter cassette or the constitutive UBI-Aequorin cassette. The stable CNGCd knockout mutation caused a hyper-thermosensitive moss phenotype, in which the heat-induced entry of apoplastic Ca(2+) and the cytosolic accumulation of GUS were triggered at lower temperatures than in wild type. The combined effects of an artificial membrane fluidizer and elevated temperatures suggested that the gene products of CNGCd and CNGCb are paralogous subunits of Ca(2+)channels acting as a sensitive proteolipid thermocouple. Depending on the rate of temperature increase, the duration and intensity of the heat priming preconditions, terrestrial plants may thus acquire an array of HSP-based thermotolerance mechanisms against upcoming, otherwise lethal, extreme heat waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the initial phases of type 1 diabetes, pancreatic islets are invaded by immune cells, exposing β-cells to proinflammatory cytokines. This unfavorable environment results in gene expression modifications leading to loss of β-cell functions. To study the contribution of microRNAs (miRNAs) in this process, we used microarray analysis to search for changes in miRNA expression in prediabetic NOD mice islets. We found that the levels of miR-29a/b/c increased in islets of NOD mice during the phases preceding diabetes manifestation and in isolated mouse and human islets exposed to proinflammatory cytokines. Overexpression of miR-29a/b/c in MIN6 and dissociated islet cells led to impairment in glucose-induced insulin secretion. Defective insulin release was associated with diminished expression of the transcription factor Onecut2, and a consequent rise of granuphilin, an inhibitor of β-cell exocytosis. Overexpression of miR-29a/b/c also promoted apoptosis by decreasing the level of the antiapoptotic protein Mcl1. Indeed, a decoy molecule selectively masking the miR-29 binding site on Mcl1 mRNA protected insulin-secreting cells from apoptosis triggered by miR-29 or cytokines. Taken together, our findings suggest that changes in the level of miR-29 family members contribute to cytokine-mediated β-cell dysfunction occurring during the initial phases of type 1 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focused mainly on changes in the microtubule cytoskeleton in a transgenic mouse where beta-galactosidase fused to a truncated neurofilament subunit led to a decrease in neurofilament triplet protein expression and a loss in neurofilament assembly and abolished transport into neuronal processes in spinal cord and brain. Although all neurofilament subunits accumulated in neuronal cell bodies, our data suggest an increased solubility of all three subunits, rather than increased precipitation, and point to a perturbed filament assembly. In addition, reduced neurofilament phosphorylation may favor an increased filament degradation. The function of microtubules seemed largely unaffected, in that tubulin and microtubule-associated proteins (MAP) expression and their distribution were largely unchanged in transgenic animals. MAP1A was the only MAP with a reduced signal in spinal cord tissue, and differences in immunostaining in various brain regions corroborate a relationship between MAP1A and neurofilaments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hallmark of behavior is that animals respond to environmental change by switching from one behavioral state to another. However, information on the molecular underpinnings of these behavioral shifts and how they are mediated by the environment is lacking. The ant Pheidole pallidula with its morphologically and behaviorally distinct major and minor workers is an ideal system to investigate behavioral shifts. The physically larger majors are predisposed to defend the ant nest, whereas the smaller minors are the foragers. Despite this predisposition, majors are able to shift to foraging according to the needs of the colony. We show that the ant foraging (ppfor) gene, which encodes a cGMP-dependent protein kinase (PKG), mediates this shift. Majors have higher brain PKG activities than minors, and the spatial distribution of the PPFOR protein differs in these workers. Specifically, majors express the PPFOR protein in 5 cells in the anterior face of the ant brain, whereas minors do not. Environmental manipulations show that PKG is lower in the presence of a foraging stimulus and higher when defense is required. Finally, pharmacological activation of PKG increases defense and reduces foraging behavior. Thus, PKG signaling plays a critical role in P. pallidula behavioral shifts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lithium-pilocarpine model mimics most features of human temporal lobe epilepsy. Following our prior studies of cerebral metabolic changes, here we explored the expression of transporters for glucose (GLUT1 and GLUT3) and monocarboxylates (MCT1 and MCT2) during and after status epilepticus (SE) induced by lithium-pilocarpine in PN10, PN21, and adult rats. In situ hybridization was used to study the expression of transporter mRNAs during the acute phase (1, 4, 12 and 24h of SE), the latent phase, and the early and late chronic phases. During SE, GLUT1 expression was increased throughout the brain between 1 and 12h of SE, more strongly in adult rats; GLUT3 increased only transiently, at 1 and 4h of SE and mainly in PN10 rats; MCT1 was increased at all ages but 5-10-fold more in adult than in immature rats; MCT2 expression increased mainly in adult rats. At all ages, MCT1 and MCT2 up-regulation was limited to the circuit of seizures while GLUT1 and GLUT3 changes were more widespread. During the latent and chronic phases, the expression of nutrient transporters was normal in PN10 rats. In PN21 rats, GLUT1 was up-regulated in all brain regions. In contrast, in adult rats GLUT1 expression was down-regulated in the piriform cortex, hilus and CA1 as a result of extensive neuronal death. The changes in nutrient transporter expression reported here further support previous findings in other experimental models demonstrating rapid transcriptional responses to marked changes in cerebral energetic/glucose demand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The objective of the study is to evaluate cross-sectional and longitudinal changes in children's commuting to school in a representative sample of a Brazilian city. METHODS: Two school-based studies were carried out in 2002 (n=2936; 7-10years old) and 2007 (n=1232; 7-15years old) in Florianopolis, Brazil. Cross-sectional data were collected from children aged 7 to 10years in 2002 and 2007. Longitudinal analyses were performed with data from 733 children participating in both surveys. Children self-reported their mode of transportation to school using a validated illustrated questionnaire. Changes were tested with chi square statistics and McNemar's test. RESULTS: Cross-sectional data showed a 17% decline in active commuting; a decrease from 49% in 2002 to 41% in 2007. On the other hand, active commuting among the 733 children increased as they entered adolescence 5years later, rising from 40% to 49%. CONCLUSION: Active commuting to school decreased in Brazilian children aged 7-10years over a five year period; whereas, it increased among children entering adolescence. Policies should focus on safety and environmental determinants to increase active commuting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated fatigue-induced changes in spring-mass model characteristics during repeated running sprints. Sixteen active subjects performed 12 × 40 m sprints interspersed with 30 s of passive recovery. Vertical and anterior-posterior ground reaction forces were measured at 5-10 m and 30-35 m and used to determine spring-mass model characteristics. Contact (P < 0.001), flight (P < 0.05) and swing times (P < 0.001) together with braking, push-off and total stride durations (P < 0.001) lengthened across repetitions. Stride frequency (P < 0.001) and push-off forces (P < 0.05) decreased with fatigue, whereas stride length (P = 0.06), braking (P = 0.08) and peak vertical forces (P = 0.17) changes approached significance. Center of mass vertical displacement (P < 0.001) but not leg compression (P > 0.05) increased with time. As a result, vertical stiffness decreased (P < 0.001) from the first to the last repetition, whereas leg stiffness changes across sprint trials were not significant (P > 0.05). Changes in vertical stiffness were correlated (r > 0.7; P < 0.001) with changes in stride frequency. When compared to 5-10 m, most of ground reaction force-related parameters were higher (P < 0.05) at 30-35 m, whereas contact time, stride frequency, vertical and leg stiffness were lower (P < 0.05). Vertical stiffness deteriorates when 40 m run-based sprints are repeated, which alters impact parameters. Maintaining faster stride frequencies through retaining higher vertical stiffness is a prerequisite to improve performance during repeated sprinting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic-inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated disease with no known biomarkers for diagnosing the disease or assessing its prognosis. We performed transcriptional profiling microarray analysis on skin punch biopsies from 20 CIDP patients and 17 healthy controls to identify disease-associated gene expression changes. We demonstrate changes in expression of genes involved in immune and chemokine regulation, growth and repair. We also found a combination of two upregulated genes that can be proposed as a novel biomarker of the disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of ubiquitin in development of the mammalian brain has been studied using a monoclonal antibody, RHUb1, specific for ubiquitin. Immunodevelopment of western blots of homogenate samples of the cerebral cortex, hippocampus and cerebellum prepared from animals of known postnatal age show marked developmental changes in conjugate level. Striking decreases in the level of a prominent conjugate of molecular weight 22,000, which is identified as ubiquitinated histone, are observed during the first postnatal week in the cerebral cortex and hippocampus, but not the cerebellum. A marked overall developmental decrease in the level of high-molecular-weight (> 40,000) ubiquitin conjugates which occurs predominantly during the third, but also the fourth, postnatal week is observed in all three regions. Immunocytochemical data obtained with the RHUb1 antibody show intense staining of neuronal perikarya, nuclei and dendrites in early postnatal cerebral cortex and hippocampus. Staining of pyramidal cell perikarya and dendrites is particularly prominent. The intensity of dendritic staining, particularly for the cerebral cortex, shows a striking decrease after postnatal day 14 and only faint dendritic staining is observed in the adult. In early postnatal cerebellum, immunoreactivity is predominantly nuclear, though some staining of the proximal regions of Purkinje cell dendrites is observed between postnatal days 4 and 19. As with the cerebral cortex and hippocampus, most of the ubiquitin reactivity is lost in adult animals. The loss of dendritic staining, particularly in the cerebral cortex, correlates with the decrease in the level of high-molecular-weight ubiquitin conjugates observed on the western blots. Immunodevelopment of western blots of a range of subcellular fractions prepared from developing rat forebrain shows that the developmental decrease in the level of high-molecular-weight ubiquitin conjugates is not uniform for all fractions. The decrease in conjugate level is most marked for the cell-soluble, mitochondrial and detergent-insoluble cytoskeletal fractions. Taken overall, the data suggest a role for ubiquitin in dendrite outgrowth and arborization, loss of dendritic ubiquitin immunoreactivity correlating with completion of these processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To detect anatomical differences in areas related to motor processing between patients with motor conversion disorder (CD) and controls. METHODS: T1-weighted 3T brain MRI data of 15 patients suffering from motor CD (nine with hemiparesis and six with paraparesis) and 25 age- and gender-matched healthy volunteers were compared using voxel-based morphometry (VBM) and voxel-based cortical thickness (VBCT) analysis. RESULTS: We report significant cortical thickness (VBCT) increases in the bilateral premotor cortex of hemiparetic patients relative to controls and a trend towards increased grey matter volume (VBM) in the same region. Regression analyses showed a non-significant positive correlation between cortical thickness changes and symptom severity as well as illness duration in CD patients. CONCLUSIONS: Cortical thickness increases in premotor cortical areas of patients with hemiparetic CD provide evidence for altered brain structure in a condition with presumed normal brain anatomy. These may either represent premorbid vulnerability or a plasticity phenomenon related to the disease with the trends towards correlations with clinical variables supporting the latter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies revealed personality changes in elderly patients with early-onset depression (EOD) that persist in euthymic stages. However, depression in older patients is a complex disorder that may affect not only personality, but also cognition and brain structure. To address this issue, a cross-sectional comparison and 2-year follow-up of 28 EOD elderly patients and 48 healthy controls included detailed neurocognitive assessment, estimates of brain volumes in limbic areas and white matter hyperintensities, as well as evaluation of the Five Factor Model of personality, in a remitted mood state. Results revealed that cognitive performances as well as brain volumes were preserved in EOD patients both at baseline and at follow-up. The increased Neuroticism factor and Anxiety facet scores as well as the decreased Warmth and Positive Emotions facet scores found at baseline reached the level of healthy controls after 2years. Only the Depression facet scores remained significantly higher in EOD patients compared to controls upon follow-up. Results were independent of depressive relapse since baseline (25% of patients). These findings suggest that both cognitive performances and brain volumes show long-term preservation in older EOD patients. In contrast, the depression-related personality facet might be a trait like marker that persists in the long-term evolution of this disorder.