327 resultados para Cardiac arrhythmia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Use of cardiopulmonary bypass for emergency resuscitation is not new. In fact, John Gibbon proposed this concept for the treatment of severe pulmonary embolism in 1937. Significant progress has been made since, and two main concepts for cardiac assist based on cardiopulmonary bypass have emerged: cardiopulmonary support (CPS) and extracorporeal membrane oxygenation (ECMO). The objective of this review is to summarize the state of the art in these two technologies. METHODS: Configuration of CPS is now fairly standard. A mobile cart with relatively large wheels allowing for easy transportation carries a centrifugal pump, a back-up battery with a charger, an oxygen cylinder, and a small heating system. Percutaneous cannulation, pump-driven venous return, rapid availability, and transportability are the main characteristics of a CPS system. Cardiocirculatory arrest is a major predictor of mortality despite the use of CPS. In contrast, CPS appears to be a powerful tool for patients in cardiogenic shock before cardiocirculatory arrest, requiring some type of therapeutic procedures, especially repair of anatomically correctable problems or bridging to other mechanical circulatory support systems such as ventricular assist devices. CPS is in general not suitable for long-term applications because of the small-bore cannulas, resulting in significant pressure gradients and eventually hemolysis. RESULTS: In contrast, ECMO can be designed for longer-term circulatory support. This requires large-bore cannulas and specifically designed oxygenators. The latter are either plasma leakage resistent (true membranes) or relatively thrombo-resistant (heparin coated). Both technologies require oxygenator changeovers although the main reason for this is different (clotting for the former, plasma leakage for the latter). Likewise, the tubing within a roller pump has to be displaced and centrifugal pump heads have to be replaced over time. ECMO is certainly the first choice for a circulatory support system in the neonatal and pediatric age groups, where the other assist systems are too bulky. ECMO is also indicated for patients improving on CPS. Septic conditions are, in general, considered as contraindications for ECMO. CONCLUSIONS: Ease of availability and moderate cost of cardiopulmonary bypass-based cardiac support technologies have to be balanced against the significant immobilization of human resources, which is required to make them successful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac arrhythmias are very frequent in fetuses and newborns. The prognosis depends on the nature of the arrhythmias but is most often either spontaneously benign or following short-term medication administration. A correct diagnosis is essential for both management and prognosis. It is based on echocardiography during the fetal period and mainly on history, physical exam, and electrocardiogram after birth, but other modalities are available to record transient arrhythmic events. Irregular rhythms are mostly benign and rarely require therapy. In most fetuses and infants, tachyarrhythmias resolve spontaneously or require short-term administration of antiarrhythmics. Approximately one third of these may recur later on, especially during adolescence. Persistent bradyarrhythmias might require pacemaker implantation when associated with failure to thrive or with risk of sudden death. CONCLUSION: Arrhythmias in fetuses and infants are very common and mostly benign. History, physical exam, and recording of the arrhythmia are essential to make a correct diagnosis and establish an appropriate management for the rare potentially harmful arrhythmias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-altitude destinations are visited by increasing numbers of children and adolescents. High-altitude hypoxia triggers pulmonary hypertension that in turn may have adverse effects on cardiac function and may induce life-threatening high-altitude pulmonary edema (HAPE), but there are limited data in this young population. We, therefore, assessed in 118 nonacclimatized healthy children and adolescents (mean ± SD; age: 11 ± 2 yr) the effects of rapid ascent to high altitude on pulmonary artery pressure and right and left ventricular function by echocardiography. Pulmonary artery pressure was estimated by measuring the systolic right ventricular to right atrial pressure gradient. The echocardiography was performed at low altitude and 40 h after rapid ascent to 3,450 m. Pulmonary artery pressure was more than twofold higher at high than at low altitude (35 ± 11 vs. 16 ± 3 mmHg; P < 0.0001), and there existed a wide variability of pulmonary artery pressure at high altitude with an estimated upper 95% limit of 52 mmHg. Moreover, pulmonary artery pressure and its altitude-induced increase were inversely related to age, resulting in an almost twofold larger increase in the 6- to 9- than in the 14- to 16-yr-old participants (24 ± 12 vs. 13 ± 8 mmHg; P = 0.004). Even in children with the most severe altitude-induced pulmonary hypertension, right ventricular systolic function did not decrease, but increased, and none of the children developed HAPE. HAPE appears to be a rare event in this young population after rapid ascent to this altitude at which major tourist destinations are located.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Les agents pathogènes responsables d'infection entraînent chez l'hôte deux types de réponses immunes, la première, non spécifique, dite immunité innée, la seconde, spécifique à l'agent concerné, dite immunité adaptative. L'immunité innée, qui représente la première ligne de défense contre les pathogènes, est liée à la reconnaissance par les cellules de l'hôte de structures moléculaires propres aux micro-organismes (« Pathogen-Associated Molecular Patterns », PAMPs), grâce à des récepteurs membranaires et cytoplasmiques (« Pattern Recognition Receptors », PRRs) identifiant de manière spécifique ces motifs moléculaires. Les récepteurs membranaires impliqués dans ce processus sont dénommés toll-like récepteurs, ou TLRS. Lorsqu'ils sont activés par leur ligand spécifique, ces récepteurs activent des voies de signalisation intracellulaires initiant la réponse inflammatoire non spécifique et visant à éradiquer l'agent pathogène. Les deux voies de signalisation impliquées dans ce processus sont la voie des « Mitogen-Activated Protein Kinases » (MAPKs) et celle du « Nuclear Factor kappaB » (NF-κB), dont l'activation entraîne in fine l'expression de protéines de l'inflammation dénommées cytokines, ainsi que certaines enzymes produisant divers autres médiateurs inflammatoires. Dans certaines situations, cette réponse immune peut être amplifiée de manière inadéquate, entraînant chez l'hôte une réaction inflammatoire systémique exagérée, appelée sepsis. Le sepsis peut se compliquer de dysfonctions d'organes multiples (sepsis sévère), et dans sa forme la plus grave, d'un collapsus cardiovasculaire, définissant le choc septique. La défaillance circulatoire du choc septique touche les vaisseaux sanguins d'une part, le coeur d'autre part, réalisant un tableau de «dysfonction cardiaque septique », dont on connaît mal les mécanismes pathogéniques. Les bactéries à Gram négatif peuvent déclencher de tels phénomènes, notamment en libérant de l'endotoxine, qui active les voies de l'immunité innée par son interaction avec un toll récepteur, le TLR4. Outre l'endotoxine, la plupart des bactéries à Gram négatif relâchent également dans leur environnement une protéine, la flagelline, qui est le constituant majeur du flagelle bactérien, organelle assurant la mobilité de ces micro-organismes. Des données récentes ont indiqué que la flagelline active, dans certaines cellules, les voies de l'immunité innée en se liant au récepteur TLRS. On ne connaît toutefois pas les conséquences de l'interaction flagelline-TLRS sur le développement de l'inflammation et des dysfonctions d'organes au cours du sepsis. Nous avons par conséquent élaboré le présent travail en formulant l'hypothèse que la flagelline pourrait déclencher une telle inflammation et représenter ainsi un médiateur potentiel de la dysfonction d'organes au cours du sepsis à Gram négatif, en nous intéressant plus particulièrement àl'inflammation et à la dysfonction cardiaque. Dans la première partie de ce travail, nous avons étudié les effets de la flagelline sur l'activation du NF-κB et des MAPKs, et sur l'expression de cytokines inflammatoires au niveau du myocarde in vitro (cardiomyocytes en culture) et in vivo (injection de flagelline recombinante à des souris). Nous avons observé tout d'abord que le récepteur TLRS est fortement exprimé au niveau du myocarde. Nous avons ensuite démontré que la flagelline active la voie du NF-κB et des MAP kinases (p38 et JNK), stimule la production de cytokines et de chemokines inflammatoires in vitro et in vivo, et entraîne l'activation de polynucléaires neutrophiles dans le tissu cardiaque in vivo. Finalement, au plan fonctionnel, nous avons pu montrer que la flagelline entraîne une dilatation et une réduction aiguë de la contractilité du ventricule gauche chez la souris, reproduisant les caractéristiques de la dysfonction cardiaque septique. Dans la deuxième partie, nous avons déterminé la distribution du récepteur TLRS dans les autres organes majeurs de la souris (poumon, foie, intestin et rein}, et avons caractérisé dans ces organes l'effet de la flagelline sur l'activation du NF-κB et des MAPKs, l'expression de cytokines, et l'induction de l'apoptose. Nous avons démontré que le TLRS est exprimé de façon constitutive dans ces organes, et que l'injection de flagelline y déclenche les cascades de l'immunité innée et de processus apoptotiques. Finalement, nous avons également déterminé que la flagelline entraîne une augmentation significative de multiples cytokines dans le plasma une à six heures après son injection. En résumé, nos données démontrent que la flagelline bactérienne (a) entraîne une inflammation et une dysfonction importantes du myocarde et (b) active de manière très significative les mécanismes d'immunité innée dans les principaux organes et entraîne une réponse inflammatoire systémique. Par conséquent, la flagelline peut représenter un médiateur puissant de l'inflammation et de la dysfonction d'organes, notamment du coeur, au cours du choc septique déclenché par les bactéries à Gram négatif. Summary Pathogenic microorganisms trigger two kinds of immune responses in the host. The first one is immediate and non-specific and is termed innate immunity, whereas the second one, specifically targeted at the invading agent, is termed adaptative immunity. Innate immunity, which represents the first line of defense against invading pathogens, confers the host the ability to recognize molecular structures common to many microbial pathogens, ("Pathogen-Associated Molecular Patterns", PAMPs), through cytosolic or membrane-associated receptors ("Pattern Recognition Receptors", PRRs), the latter being represented by a family of receptors termed "toll-like receptors or TLRs". Once activated by the binding of their specific ligand, these receptors activate intracellular signaling pathways, which initiate the non-specific inflammatory response aimed at eradicating the pathogens. The two pathways implicated in this process are the mitogen-activated protein kinases (MAPK) and the nuclear factor kappa B (NF-κB) signaling pathways, whose activation elicit in fine the expression of inflammatory proteins termed cytokines, as well as various enzymes producing a wealth of additional inflammatory mediators. In some circumstances, the innate immune response can become amplified and dysregulated, triggering an overwhelming systemic inflammatory response in the host, identified as sepsis. Sepsis can be associated with multiple organ dysfunction (severe sepsis), and in its most severe form, with cardiovascular collapse, defming septic shock. The cardiovascular failure associated with septic shock affects blood vessels as well as the heart, resulting in a particular form of acute heart failure termed "septic cardiac dysfunction ", whose pathogenic mechanisms remain partly undefined. Gram-negative bacteria can initiate such phenomena, notably by releasing lipopolysaccharide (LPS), which activates innate immune signaling by interacting with its specific toll receptor, the TLR4. Besides LPS, most Gram-negative bacteria also release flagellin into their environment, which is the main structural protein of the bacterial flagellum, an appendage extending from the outer bacterial membrane, responsible for the motility of the microorganism. Recent data indicated that flagellin activate immune responses upon binding to its receptor, TLRS, in various cell types. However, the role of flagellin/TLRS interaction in the development of inflammation and organ dysfunction during sepsis is not known. Therefore, we designed the present work to address the hypothesis that flagellin might trigger such inflammatory responses and thus represent a potential mediator of organ dysfunction during Gram-negative sepsis, with a particular emphasis on cardiac inflammation and contractile dysfunction. In the first part of this work, we investigated the effects of flagellin on NF-κB and MAPK activation and the generation of pro-inflammatory mediators within the heart in vitro (cultured cardiomyocytes) and in vivo (injection of recombinant flagellin into mice). We first observed that TLRS protein is strongly expressed by the myocardium. We then demonstrated that flagellin activates NF-κB and MAP kinases (p38 and JNK), upregulates the transcription of pro-inflammatory cytokines and chemokines in vitro and in vivo, and stimulates the activation of polymorphonuclear neutrophils within the heart in vivo. Finally, we demonstrated that flagellin triggers acute cardiac dilation, and a significant reduction of left ventricular contractility, mimicking characteristics of clinical septic cardiac dysfunction. In the second part, we determined the TLRS distribution in other mice major organs (lung, liver, gut and kidney) and we characterized in these organs the effects of flagellin on NF-κB and MAPK activation, on the expression of pro-inflammatory çytokines, and on the induction of apoptosis. We demonstrated that TLRS protein is constitutively expressed and that flagellin activates prototypical innate immune responses and pro-apoptotic pathways in all these organs. Finally, we also observed that flagellin induces a significant increase of multiple cytokines in the plasma from 1 to 6 hours after its intravenous administration. Altogether, these data provide evidence that bacterial flagellin (a) triggers an important inflammatory response and an acute dysfunction of the myocardium, and (b) significantly activates the mechanisms of innate immunity in most major organs and elicits a systemic inflammatory response. In consequence, flagellin may represent a potent mediator of inflammation and multiple organ failure, notably cardiac dysfunction, during Gram-negative septic shock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in CT technologies had significantly improved the clinical utility of cardiac CT. Major efforts have been made to optimize the image quality, standardize protocols and limit the radiation exposure. Rapid progress in post-processing tools dedicated not only to the coronary artery assessment but also to the cardiac cavities, valves and veins extended applications of cardiac CT. This potential might be however used optimally considering the current appropriate indications for use as well as the current technical imitations. Coronary artery disease and related ischemic cardiomyopathy remain the major applications of cardiac CT and at the same time the most complex one. Integration of a specific knowledge is mandatory for optimal use in this area for asymptomatic as for symptomatic patients, with a specific regards to patient with acute chest pain. This review aimed to propose a practical approach to implement appropriate indications in our routine practice. Emerging indications and future direction are also discussed. Adequate preparation of the patient, training of physicians, and the multidisciplinary interaction between actors are the key of successful implementation of cardiac CT in daily practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic growth hormone (GH) hypersecretion in rats leads to increased isometric force without affecting the unloaded shortening velocity of isolated cardiac papillary muscles, despite a marked isomyosin shift toward V3. To determine if alterations occurred at the level of the contractile proteins in rats bearing a GH-secreting tumor (GH rats), we examined the mechanical properties of skinned fibers to eliminate the early steps of the excitation-contraction coupling mechanism. We found that maximal active tension and stiffness at saturating calcium concentrations (pCa 4.5) were markedly higher in GH rats than in control rats (tension, 52.9 +/- 5.2 versus 38.1 +/- 4.6 mN.mm-2, p < 0.05; stiffness, 1,105 +/- 120 versus 685 +/- 88 mN.mm-2.microns-1, p < 0.01), whereas values at low calcium concentrations (pCa 9) were unchanged. In addition, the calcium sensitivity of the contractile proteins was slightly but significantly higher in GH rats than in control rats (delta pCa 0.04, p < 0.001). The crossbridge cycling rate, reflected by the response to quick length changes, was lower in GH rats than in control rats (62.0 +/- 2.6 versus 77.4 +/- 6.6 sec-1, p < 0.05), in good agreement with a decrease in the proportion of alpha-myosin heavy chains in the corresponding papillary muscles (45.5 +/- 2.0% versus 94.6 +/- 2.4%, p < 0.001). The changes in myosin heavy chain protein phenotype were paralleled by similar changes of the corresponding mRNAs, indicating that the latter occurred mainly at a pretranslational level. These results demonstrate that during chronic GH hypersecretion in rats, alterations at the myofibrillar level contribute to the increase in myocardial contractility observed in intact muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Therapeutic temperature modulation is recommended after cardiac arrest (CA). However, body temperature (BT) regulation has not been extensively studied in this setting. We investigated BT variation in CA patients treated with therapeutic hypothermia (TH) and analyzed its impact on outcome. METHODS: A prospective cohort of comatose CA patients treated with TH (32-34°C, 24h) at the medical/surgical intensive care unit of the Lausanne University Hospital was studied. Spontaneous BT was recorded on hospital admission. The following variables were measured during and after TH: time to target temperature (TTT=time from hospital admission to induced BT target <34°C), cooling rate (spontaneous BT-induced BT target/TTT) and time of passive rewarming to normothermia. Associations of spontaneous and induced BT with in-hospital mortality were examined. RESULTS: A total of 177 patients (median age 61 years; median time to ROSC 25 min) were studied. Non-survivors (N=90, 51%) had lower spontaneous admission BT than survivors (median 34.5 [interquartile range 33.7-35.9]°C vs. 35.1 [34.4-35.8]°C, p=0.04). Accordingly, time to target temperature was shorter among non-survivors (200 [25-363]min vs. 270 [158-375]min, p=0.03); however, when adjusting for admission BT, cooling rates were comparable between the two outcome groups (0.4 [0.2-0.5]°C/h vs. 0.3 [0.2-0.4]°C/h, p=0.65). Longer duration of passive rewarming (600 [464-744]min vs. 479 [360-600]min, p<0.001) was associated with mortality. CONCLUSIONS: Lower spontaneous admission BT and longer time of passive rewarming were associated with in-hospital mortality after CA and TH. Impaired thermoregulation may be an important physiologic determinant of post-resuscitation disease and CA prognosis. When assessing the benefit of early cooling on outcome, future trials should adjust for patient admission temperature and use the cooling rate rather than the time to target temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Both systolic and diastolic dysfunction have been observed in patients with anterolateral myocardial infarction. Diastolic dysfunction is related to disturbances in relaxation and diastolic filling. OBJECTIVE: To analyse cardiac rotation, regional shortening and diastolic relaxation in patients with anterolateral infarction. METHODS: Cardiac rotation and relaxation in controls and patients with chronic anterolateral infarction were assessed by myocardial tagging. Myocardial tagging is based on magnetic resonance imaging and allows us to label specific myocardial regions for imaging cardiac motion (rotation, translation and radial displacement). A rectangular grid was placed on the myocardium (basal, equatorial and apical short-axis plane) of each of 18 patients with chronic anterolateral infarction and 13 controls. Cardiac rotation, change in area and shortening of circumference were determined in each case. RESULTS: The left ventricle in controls performs a systolic wringing motion with a clockwise rotation at the base and a counterclockwise rotation at the apex when viewed from the apex. During relaxation a rotational motion in the opposite direction (namely untwisting) can be observed. In patients with anterolateral infarction, there is less systolic rotation at the apex and diastolic untwisting is delayed and prolonged in comparison with controls. In the presence of a left ventricular aneurysm (n = 4) apical rotation is completely lost. There is less shortening of circumference in infarcted and remote regions. CONCLUSIONS: The wringing motion of the myocardium might be an important mechanism involved in maintaining normal cardiac function with minimal expenditure of energy. This mechanism no longer operates in patients with left ventricular aneurysms and operates significantly less than normal in those with anterolateral hypokinaesia. Diastolic untwisting is significantly delayed and prolonged in patients with anterolateral infarction, which could explain the occurrence of diastolic dysfunction in these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT: Infection of implantable cardiac devices is an emerging disease with significant morbidity, mortality, and health care costs. OBJECTIVES: To describe the clinical characteristics and outcome of cardiac device infective endocarditis (CDIE) with attention to its health care association and to evaluate the association between device removal during index hospitalization and outcome. DESIGN, SETTING, AND PATIENTS: Prospective cohort study using data from the International Collaboration on Endocarditis-Prospective Cohort Study (ICE-PCS), conducted June 2000 through August 2006 in 61 centers in 28 countries. Patients were hospitalized adults with definite endocarditis as defined by modified Duke endocarditis criteria. MAIN OUTCOME MEASURES: In-hospital and 1-year mortality. RESULTS: CDIE was diagnosed in 177 (6.4% [95% CI, 5.5%-7.4%]) of a total cohort of 2760 patients with definite infective endocarditis. The clinical profile of CDIE included advanced patient age (median, 71.2 years [interquartile range, 59.8-77.6]); causation by staphylococci (62 [35.0% {95% CI, 28.0%-42.5%}] Staphylococcus aureus and 56 [31.6% {95% CI, 24.9%-39.0%}] coagulase-negative staphylococci); and a high prevalence of health care-associated infection (81 [45.8% {95% CI, 38.3%-53.4%}]). There was coexisting valve involvement in 66 (37.3% [95% CI, 30.2%-44.9%]) patients, predominantly tricuspid valve infection (43/177 [24.3%]), with associated higher mortality. In-hospital and 1-year mortality rates were 14.7% (26/177 [95% CI, 9.8%-20.8%]) and 23.2% (41/177 [95% CI, 17.2%-30.1%]), respectively. Proportional hazards regression analysis showed a survival benefit at 1 year for device removal during the initial hospitalization (28/141 patients [19.9%] who underwent device removal during the index hospitalization had died at 1 year, vs 13/34 [38.2%] who did not undergo device removal; hazard ratio, 0.42 [95% CI, 0.22-0.82]). CONCLUSIONS: Among patients with CDIE, the rate of concomitant valve infection is high, as is mortality, particularly if there is valve involvement. Early device removal is associated with improved survival at 1 year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sudden Cardiac Death (SCD) has become an important public health challenge in the Western World. In Switzerland near 10,000 people suffer each year from SCD. The survival from SCD to hospital discharge is discouraging (near 5%). Large majority of events occur unexpectedly in the out-of-hospital environment and are not predicted with great accuracy by risk profiling. Because the majority of SCD occur by the mechanism of ventricular fibrillation, community-based defibrillation strategies have emerged as one approach to SCD problem. Newer strategies of defibrillation designed to respond faster to out-of-hospital cardiac arrest, including public access defibrillation, as well as aggressive primary and secondary prevention of coronary artery disease appears as the best approach for successful management of SCD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: In acute myocardial infarction (AMI), both tissue necrosis and edema are present and both might be implicated in the development of intraventricular dyssynchrony. However, their relative contribution to transient dyssynchrony is not known. Cardiovascular magnetic resonance (CMR) can detect necrosis and edema with high spatial resolution and it can quantify dyssynchrony by tagging techniques. METHODS: Patients with a first AMI underwent percutaneous coronary interventions (PCI) of the infarct-related artery within 24 h of onset of chest pain. Within 5-7 days after the event and at 4 months, CMR was performed. The CMR protocol included the evaluation of intraventricular dyssynchrony by applying a novel 3D-tagging sequence to the left ventricle (LV) yielding the CURE index (circumferential uniformity ratio estimate; 1 = complete synchrony). On T2-weighted images, edema was measured as high-signal (>2 SD above remote tissue) along the LV mid-myocardial circumference on 3 short-axis images (% of circumference corresponding to the area-at-risk). In analogy, on late-gadolinium enhancement (LGE) images, necrosis was quantified manually as percentage of LV mid-myocardial circumference on 3 short-axis images. Necrosis was also quantified on LGE images covering the entire LV (expressed as %LV mass). Finally, salvaged myocardium was calculated as the area-at-risk minus necrosis (expressed as % of LV circumference). RESULTS: After successful PCI (n = 22, 2 female, mean age: 57 ± 12y), peak troponin T was 20 ± 36ug/l and the LV ejection fraction on CMR was 41 ± 8%. Necrosis mass was 30 ± 10% and CURE was 0.91 ± 0.05. Edema was measured as 58 ± 14% of the LV circumference. In the acute phase, the extent of edema correlated with dyssynchrony (r2 = -0.63, p < 0.01), while extent of necrosis showed borderline correlation (r2 = -0.19, p = 0.05). PCI resulted in salvaged myocardium of 27 ± 14%. LV dyssynchrony (=CURE) decreased at 4 months from 0.91 ± 0.05 to 0.94 ± 0.03 (p < 0.004, paired t-test). At 4 months, edema was absent and scar %LV slightly shrunk to 23.7 ± 10.0% (p < 0.002 vs baseline). Regression of LV dyssynchrony during the 4 months follow-up period was predicted by both, the extent of edema and its necrosis component in the acute phase. CONCLUSIONS: In the acute phase of infarction, LV dyssynchrony is closely related to the extent of edema, while necrosis is a poor predictor of acute LV dyssynchrony. Conversely, regression of intraventricular LV dyssynchrony during infarct healing is predicted by the extent of necrosis in the acute phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Positron emission tomography (PET) during the cold pressor test (CPT) has been used to assess endothelium-dependent coronary vasoreactivity, a surrogate marker of cardiovascular events. However, its use remains limited by cardiac PET availability. As multidetector computed tomography (MDCT) is more widely available, we aimed to develop a measurement of endothelium-dependent coronary vasoreactivity with MDCT and similar radiation burden as with PET. METHODS AND RESULTS: A study group of 18 participants without known cardiovascular risk factor (9F/9M; age 60±6 years) underwent cardiac PET with (82)Rb and unenhanced ECG-gated MDCT within 4h, each time at rest and during CPT. The relation between absolute myocardial blood flow (MBF) response to CPT by PET (ml·min(-1)·g(1)) and relative changes in MDCT-measured coronary artery surface were assessed using linear regression analysis and Spearman's correlation. MDCT and PET/CT were analyzed in all participants. Hemodynamic conditions during CPT at MDCT and PET were similar (P>0.3). Relative changes in coronary artery surface because of CPT (2.0-21.2%) correlated to changes in MBF (-0.10-0.52ml·min(-1)·g(1)) (ρ=0.68, P=0.02). Effective dose was 1.3±0.2mSv for MDCT and 3.1mSv for PET/CT. CONCLUSIONS: Assessment of endothelium-dependent coronary vasoreactivity using MDCT CPT appears feasible. Because of its wider availability, shorter examination time and similar radiation burden, MDCT could be attractive in clinical research for coronary status assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Levels of circulating cardiac troponin I (cTnI) or T are correlated to extent of myocardial destruction after an acute myocardial infarction. Few studies analyzing this relation have employed a second-generation cTnI assay or cardiac magnetic resonance (CMR) as the imaging end point. In this post hoc study of the Efficacy of FX06 in the Prevention of Mycoardial Reperfusion Injury (F.I.R.E.) trial, we aimed at determining the correlation between single-point cTnI measurements and CMR-estimated infarct size at 5 to 7 days and 4 months after a first-time ST-elevation myocardial infarction (STEMI) and investigating whether cTnI might provide independent prognostic information regarding infarct size at 4 months even taking into account early infarct size. Two hundred twenty-seven patients with a first-time STEMI were included in F.I.R.E. All patients received primary percutaneous coronary intervention within 6 hours from onset of symptoms. cTnI was measured at 24 and 48 hours after admission. CMR was conducted within 1 week of the index event (5 to 7 days) and at 4 months. Pearson correlations (r) for infarct size and cTnI at 24 hours were r = 0.66 (5 days) and r = 0.63 (4 months) and those for cTnI at 48 hours were r = 0.67 (5 days) and r = 0.65 (4 months). In a multiple regression analysis for predicting infarct size at 4 months (n = 141), cTnI and infarct location retained an independent prognostic role even taking into account early infarct size. In conclusion, a single-point cTnI measurement taken early after a first-time STEMI is a useful marker for infarct size and might also supplement early CMR evaluation in prediction of infarct size at 4 months.