67 resultados para CA-11
Resumo:
The Mg/Ca and Sr/Ca ratios of living ostracods belonging to 15 different species and sampled monthly over a one year-cycle at five sites (2, 5, 13, 33, and 70 m water depths) in western Lake Geneva (Switzerland) are compared to the oxygen and carbon isotope compositions measured on the same samples as well as to the temperature and chemical composition of the water (δ18OH2O, δ13CDIC, Mg/CaH2O, and Sr/CaH2O) at the time of ostracod calcification. The results indicate that trace element incorporation varied at the species level, mainly because of the ecological and biological differences between the different species (life-cycle, (micro-)habitat preference, biomineralisation processes) and the control thereof on trace element incorporation of the ostracods. In littoral zones, the Mg/Ca and Sr/Ca of ostracod valves increase as temperature and Mg/Ca and Sr/Ca of water increase during spring and summer, hence reflecting mainly seasonal variations. However, given that for Lake Geneva the Mg/Ca and Sr/Ca of water also vary with temperature, it is not possible to distinguish the effects of temperature from those of changes in chemical composition of water on the trace element content in ostracod valves. Results support that both water temperature and water Mg/Ca and Sr/Ca ratios control the final trace element content of Cyprididae valves. In contrast, the trace element content of species living in deeper zones of the basin is influenced by variations in the chemical composition of the pore water for the infaunal species. Trace element content measured for these specimens cannot, therefore, be used to reconstruct the compositions of the water lake bottom. In addition, incorporation of Mg and Sr into the shell differs from one family, sub-family, or even species to the other. This suggests that the distinctive Mg and Sr partition coefcients for the analysed taxa result from different valve calcification strategies that may be phylogenetic.
Resumo:
BACKGROUND: Due to its history, with a high number of migration events, the Mediterranean basin represents a challenging area for population genetic studies. A large number of genetic studies have been carried out in the Mediterranean area using different markers but no consensus has been reached on the genetic landscape of the Mediterranean populations. In order to further investigate the genetics of the human Mediterranean populations, we typed 894 individuals from 11 Mediterranean populations with 25 single-nucleotide polymorphisms (SNPs) located on the X-chromosome. RESULTS: A high overall homogeneity was found among the Mediterranean populations except for the population from Morocco, which seemed to differ genetically from the rest of the populations in the Mediterranean area. A very low genetic distance was found between populations in the Middle East and most of the western part of the Mediterranean Sea.A higher migration rate in females versus males was observed by comparing data from X-chromosome, mt-DNA and Y-chromosome SNPs both in the Mediterranean and a wider geographic area.Multilocus association was observed among the 25 SNPs on the X-chromosome in the populations from Ibiza and Cosenza. CONCLUSION: Our results support both the hypothesis of (1) a reduced impact of the Neolithic Wave and more recent migration movements in NW-Africa, and (2) the importance of the Strait of Gibraltar as a geographic barrier. In contrast, the high genetic homogeneity observed in the Mediterranean area could be interpreted as the result of the Neolithic wave caused by a large demic diffusion and/or more recent migration events. A differentiated contribution of males and females to the genetic landscape of the Mediterranean area was observed with a higher migration rate in females than in males. A certain level of background linkage disequilibrium in populations in Ibiza and Cosenza could be attributed to their demographic background.
Resumo:
The rate-limiting step of dietary calcium absorption in the intestine requires the brush border calcium entry channel TRPV6. The TRPV6 gene was completely sequenced in 170 renal calcium stone patients. The frequency of an ancestral TRPV6 haplotype consisting of three non-synonymous polymorphisms (C157R, M378V, M681T) was significantly higher (P = 0.039) in calcium stone formers (8.4%; derived = 502, ancestral = 46) compared to non-stone-forming individuals (5.4%; derived = 645, ancestral = 37). Mineral metabolism was investigated on four different calcium regimens: (i) free-choice diet, (ii) low calcium diet, (iii) fasting and (iv) after a 1 g oral calcium load. When patients homozygous for the derived haplotype were compared with heterozygous patients, no differences were found with respect to the plasma concentrations of 1,25-vitamin D, PTH and calcium, and the urinary excretion of calcium. In one stone-forming patient, the ancestral haplotype was found to be homozygous. This patient had absorptive hypercalciuria. We therefore expressed the ancestral protein (157R+378V+681T) in Xenopus oocytes and found a significantly enhanced calcium permeability when tested by a (45)Ca(2+) uptake assay (7.11 +/- 1.93 versus 3.61 +/- 1.01 pmol/min/oocyte for ancestral versus derived haplotype, P < 0.01). These results suggest that the ancestral gain-of-function haplotype in TRPV6 plays a role in calcium stone formation in certain forms of absorptive hypercalciuria.
Resumo:
Cell-free translation of total RNA isolated from vaccinia virus-infected cells late in infection results in a complex mixture of polypeptides. A monospecific antibody directed against one of the major structural proteins of the virus particle immunoprecipitated a single polypeptide with a molecular weight of 11,000 (11K) from this mixture. Immunoprecipitation was therefore used to identify the structural polypeptide among the in vitro translation products of RNA purified by hybridization selection to restriction fragments of the vaccinia virus genome. This allowed us to map the mRNA coding for the 11K polypeptide to the extreme left-hand end of the HindIII E fragment. Detailed transcriptional mapping of this region of the genome by nuclease S1 analysis revealed the presence of a late RNA transcribed from the rightward-reading strand. Its 5' end mapped at ca. 130 base pairs to the left of the HindIII site at the junction between the HindIII F and E fragments. The map position of this RNA coincided precisely with the map position of the late message coding for the 11K polypeptide.