122 resultados para C-scorpionates iron(II)
Resumo:
OBJECTIVE: Mild neurocognitive disorders (MND) affect a subset of HIV+ patients under effective combination antiretroviral therapy (cART). In this study, we used an innovative multi-contrast magnetic resonance imaging (MRI) approach at high-field to assess the presence of micro-structural brain alterations in MND+ patients. METHODS: We enrolled 17 MND+ and 19 MND- patients with undetectable HIV-1 RNA and 19 healthy controls (HC). MRI acquisitions at 3T included: MP2RAGE for T1 relaxation times, Magnetization Transfer (MT), T2* and Susceptibility Weighted Imaging (SWI) to probe micro-structural integrity and iron deposition in the brain. Statistical analysis used permutation-based tests and correction for family-wise error rate. Multiple regression analysis was performed between MRI data and (i) neuropsychological results (ii) HIV infection characteristics. A linear discriminant analysis (LDA) based on MRI data was performed between MND+ and MND- patients and cross-validated with a leave-one-out test. RESULTS: Our data revealed loss of structural integrity and micro-oedema in MND+ compared to HC in the global white and cortical gray matter, as well as in the thalamus and basal ganglia. Multiple regression analysis showed a significant influence of sub-cortical nuclei alterations on the executive index of MND+ patients (p = 0.04 he and R(2) = 95.2). The LDA distinguished MND+ and MND- patients with a classification quality of 73% after cross-validation. CONCLUSION: Our study shows micro-structural brain tissue alterations in MND+ patients under effective therapy and suggests that multi-contrast MRI at high field is a powerful approach to discriminate between HIV+ patients on cART with and without mild neurocognitive deficits.
Resumo:
Pyochelin (PCH) is a siderophore produced and secreted by Pseudomonas aeruginosa for iron capture. Using (55) Fe uptake and binding assays, we showed that PCH-Fe uptake in P. aeruginosa involves, in addition to the highly studied outer membrane transporter FptA, the inner membrane permease FptX, which recognizes PCH-(55) Fe with an affinity of 0.6 ± 0.2 nM and transports the ferri-siderophore complex from the periplasm into the cytoplasm: fptX deletion inhibited (55) Fe accumulation in the bacterial cytoplasm. Chromosomal replacement was used to generate P. aeruginosa strains producing fluorescent fusions with FptX, PchR (an AraC regulator), PchA (the first enzyme involved in the PCH biosynthesis) and PchE (a non-ribosomic peptide-synthetase involved in a further step). Fluorescence imaging and cellular fractionation showed a uniform repartition of FptX in the inner membrane. PchA and PchE were found in the cytoplasm, associated to the inner membrane all over the bacteria and also concentrated at the bacterial poles. PchE clustering at the bacterial poles was dependent on PchA expression, but on the opposite PchA clustering and membrane association was PchE-independent. PchA and PchE cellular organization suggests the existence of a siderosome for PCH biosynthesis as previously proposed for pyoverdine biosynthesis (another siderophore produced by P. aeruginosa).
Resumo:
Type II topoisomerases (Topo II) are unique enzymes that change the DNA topology by catalyzing the passage of two double-strands across each other by using the energy from ATP hydrolysis. In vitro, human Topo II relaxes positive supercoiled DNA around 10-fold faster than negative supercoiled DNA. By using atomic force microscopy (AFM) we found that human Topo II binds preferentially to DNA cross-overs. Around 50% of the DNA crossings, where Topo II was bound to, presented an angle in the range of 80-90°, suggesting a favored binding geometry in the chiral discrimination by Topo II. Our studies with AFM also helped us visualize the dynamics of the unknotting action of Topo II in knotted molecules.
Resumo:
PURPOSE: The EGF receptor (EGFR) is overexpressed in the majority of metastatic castration-resistant prostate cancers (mCRPC) and might represent a valid therapeutic target. The combination of docetaxel and cetuximab, the monoclonal antibody against EGFR, has not been tested in patients with prostate cancer. EXPERIMENTAL DESIGN: Patients with mCRPC progressing during or within 90 days after at least 12 weeks of docetaxel were included in this phase II trial. Treatment consisted of docetaxel (75 mg/m(2) every 3 weeks or 35 mg/m(2) on days 1, 8, 15 every 4 weeks) in combination with cetuximab (400 mg/m(2) on day 1 and then 250 mg/m(2) weekly). The primary endpoint was progression-free survival (PFS) at 12 weeks defined as the absence of prostate-specific antigen (PSA), radiographic, or clinical progression. Evaluation of known biomarkers of response and resistance to cetuximab (EGFR, PTEN, amphiregulin, epiregulin) was conducted. RESULTS: Thirty-eight patients were enrolled at 15 Swiss centers. Median age was 68 years and median PSA was 212 ng/mL. PFS at 12 weeks was 34% [95% confidence interval (CI), 19%-52%], PFS at 24 weeks was 20%, and median overall survival (OS) was 13.3 months (95% CI, 7.3-15.4). Seven patients (20%) had a confirmed ≥ 50% and 11 patients (31%) a confirmed ≥ 30% PSA decline. About 47% of enrolled patients experienced grade 3 and 8% grade 4 toxicities. A significantly improved PFS was found in patients with overexpression of EGFR and persistent activity of PTEN. CONCLUSIONS: EGFR inhibition with cetuximab might improve the outcome of patients with mCRPC. A potential correlation between EGFR overexpression, persistent expression of PTEN, and EGFR inhibition should be investigated further.
Resumo:
Amantadine is an antiviral and antiparkinsonian drug that has been evaluated in combination therapies against hepatitis C virus (HCV) infection. Controversial results have been reported concerning its efficacy, and its mechanism of action remains unclear. Data obtained in vitro suggested a role of amantadine in inhibiting HCV p7-mediated cation conductance. In keeping with the fact that mitochondria are responsible to ionic fluxes and that HCV infection impairs mitochondrial function, we investigated a potential role of amantadine in modulating mitochondrial function. Using a well-characterized inducible cell line expressing the full-length HCV polyprotein, we found that amantadine not only prevented but also rescued HCV protein-mediated mitochondrial dysfunction. Specifically, amantadine corrected (i) overload of mitochondrial Ca(2+); (ii) inhibition of respiratory chain activity and oxidative phosphorylation; (iii) reduction of membrane potential; and (iv) overproduction of reactive oxygen species. The effects of amantadine were observed within 15 min following drug administration and confirmed in Huh-7.5 cells transfected with an infectious HCV genome. These effects were also observed in cells expressing subgenomic HCV constructs, indicating that they are not mediated or only in part mediated by p7. Single organelle analyzes carried out on isolated mouse liver mitochondria demonstrated that amantadine induces hyperpolarization of the membrane potential. Moreover, amantadine treatment increased the calcium threshold required to trigger mitochondrial permeability transition opening. In conclusion, these results support a role of amantadine in preserving cellular bioenergetics and redox homeostasis in HCV-infected cells and unveil an effect of the drug which might be exploited for a broader therapeutic utilization.
Resumo:
A better integration of the information conveyed by traces within intelligence-led framework would allow forensic science to participate more intensively to security assessments through forensic intelligence (part I). In this view, the collection of data by examining crime scenes is an entire part of intelligence processes. This conception frames our proposal for a model that promotes to better use knowledge available in the organisation for driving and supporting crime scene examination. The suggested model also clarifies the uncomfortable situation of crime scene examiners who must simultaneously comply with justice needs and expectations, and serve organisations that are mostly driven by broader security objectives. It also opens new perspective for forensic science and crime scene investigation, by the proposal to follow other directions than the traditional path suggested by dominant movements in these fields.
Resumo:
PURPOSE: To assess objective response rate (ORR) after two cycles of temozolomide in combination with topotecan (TOTEM) in children with refractory or relapsed neuroblastoma. PATIENTS AND METHODS: This multicenter, non-randomised, phase II study included children with neuroblastoma according to a two-stage Simon design. Eligibility criteria included relapsed or refractory, measurable or metaiodobenzylguanidine (mIBG) evaluable disease, no more than two lines of prior treatment. Temozolomide was administered orally at 150mg/m(2) followed by topotecan at 0.75mg/m(2) intravenously for five consecutive days every 28days. Tumour response was assessed every two cycles according to International Neuroblastoma Response Criteria (INRC), and reviewed independently. RESULTS: Thirty-eight patients were enroled and treated in 15 European centres with a median age of 5.4years. Partial tumour response after two cycles was observed in 7 out of 38 evaluable patients [ORR 18%, 95% confidence interval (CI) 8-34%]. The best ORR whatever the time of evaluation was 24% (95% CI, 11-40%) with a median response duration of 8.5months. Tumour control rate (complete response (CR)+partial response (PR)+mixed response (MR)+stable disease (SD)) was 68% (95% CI, 63-90%). The 12-months Progression-Free and Overall Survival were 42% and 58% respectively. Among 213 treatment cycles (median 4, range 1-12 per patient) the most common treatment-related toxicities were haematologic. Grade 3/4 neutropenia occurred in 62% of courses in 89% of patients, grade 3/4 thrombocytopenia in 47% of courses in 71% of patients; three patients (8%) had febrile neutropenia. CONCLUSION: Temozolomide-Topotecan combination results in very encouraging ORR and tumour control in children with heavily pretreated recurrent and refractory neuroblastoma with favourable toxicity profile.
Resumo:
A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. 'Ironomics' certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism.
Resumo:
Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex (RC). Specific membrane alterations, designated membranous webs, represent predominant sites of HCV RNA replication. The principles governing HCV RC and membranous web formation are poorly understood. Here, we used replicons harboring a green fluorescent protein (GFP) insertion in nonstructural protein 5A (NS5A) to study HCV RCs in live cells. Two distinct patterns of NS5A-GFP were observed. (i) Large structures, representing membranous webs, showed restricted motility, were stable over many hours, were partitioned among daughter cells during cell division, and displayed a static internal architecture without detectable exchange of NS5A-GFP. (ii) In contrast, small structures, presumably representing small RCs, showed fast, saltatory movements over long distances. Both populations were associated with endoplasmic reticulum (ER) tubules, but only small RCs showed ER-independent, microtubule (MT)-dependent transport. We suggest that this MT-dependent transport sustains two distinct RC populations, which are both required during the HCV life cycle.
Resumo:
BACKGROUND: Unexplained fatigue is often left untreated or treated with antidepressants. This randomized, placebo-controlled, single-blinded study evaluated the efficacy and tolerability of single-dose intravenous ferric carboxymaltose (FCM) in iron-deficient, premenopausal women with symptomatic, unexplained fatigue. METHODS: Fatigued women (Piper Fatigue Scale [PFS] score ≥5) with iron deficiency (ferritin <50 µg/L and transferrin saturation <20%, or ferritin <15 µg/L) and normal or borderline hemoglobin (≥115 g/L) were enrolled in 21 sites in Austria, Germany, Sweden and Switzerland, blinded to the study drug and randomized (computer-generated randomization sequence) to a single FCM (1000 mg iron) or saline (placebo) infusion. Primary endpoint was the proportion of patients with reduced fatigue (≥1 point decrease in PFS score from baseline to Day 56). RESULTS: The full analysis included 290 women (FCM 144, placebo 146). Fatigue was reduced in 65.3% (FCM) and 52.7% (placebo) of patients (OR 1.68, 95%CI 1.05-2.70; p = 0.03). A 50% reduction of PFS score was achieved in 33.3% FCM- vs. 16.4% placebo-treated patients (p<0.001). At Day 56, all FCM-treated patients had hemoglobin levels ≥120 g/L (vs. 87% at baseline); with placebo, the proportion decreased from 86% to 81%. Mental quality-of-life (SF-12) and the cognitive function scores improved better with FCM. 'Power of attention' improved better in FCM-treated patients with ferritin <15 µg/L. Treatment-emergent adverse events (placebo 114, FCM 209; most frequently headache, nasopharyngitis, pyrexia and nausea) were mainly mild or moderate. CONCLUSION: A single infusion of FCM improved fatigue, mental quality-of-life, cognitive function and erythropoiesis in iron-deficient women with normal or borderline hemoglobin. Although more side effects were reported compared to placebo, FCM can be an effective alternative in patients who cannot tolerate or use oral iron, the common treatment of iron deficiency. Overall, the results support the hypothesis that iron deficiency can affect women's health, and a normal iron status should be maintained independent of hemoglobin levels. TRIAL REGISTRATION: ClinicalTrials.gov NCT01110356.