73 resultados para Body-surface Area
Resumo:
The polycyclic aromatic hydrocarbon (PAH)-degrading strain Burkholderia sp. RP007 served as host strain for the design of a bacterial biosensor for the detection of phenanthrene. RP007 was transformed with a reporter plasmid containing a transcriptional fusion between the phnS putative promoter/operator region and the gene encoding the enhanced green fluorescent protein (GFP). The resulting bacterial biosensor--Burkholderia sp. strain RP037--produced significant amounts of GFP after batch incubation in the presence of phenanthrene crystals. Co-incubation with acetate did not disturb the phenanthrene-specific response but resulted in a homogenously responding population of cells. Active metabolism was required for induction with phenanthrene. The magnitude of GFP induction was influenced by physical parameters affecting the phenanthrene flux to the cells, such as the contact surface area between solid phenanthrene and the aqueous phase, addition of surfactant, and slow phenanthrene release from Model Polymer Release System beads or from a water-immiscible oil. These results strongly suggest that the bacterial biosensor can sense different phenanthrene fluxes while maintaining phenanthrene metabolism, thus acting as a genuine sensor for phenanthrene bioavailability. A relationship between GFP production and phenanthrene mass transfer is proposed.
Resumo:
OBJECTIVES: This study aimed at measuring the lipophilicity and ionization constants of diastereoisomeric dipeptides, interpreting them in terms of conformational behavior, and developing statistical models to predict them. METHODS: A series of 20 dipeptides of general structure NH(2) -L-X-(L or D)-His-OMe was designed and synthetized. Their experimental ionization constants (pK(1) , pK(2) and pK(3) ) and lipophilicity parameters (log P(N) and log D(7.4) ) were measured by potentiometry. Molecular modeling in three media (vacuum, water, and chloroform) was used to explore and sample their conformational space, and for each stored conformer to calculate their radius of gyration, virtual log P (preferably written as log P(MLP) , meaning obtained by the molecular lipophilicity potential (MLP) method) and polar surface area (PSA). Means and ranges were calculated for these properties, as was their sensitivity (i.e., the ratio between property range and number of rotatable bonds). RESULTS: Marked differences between diastereoisomers were seen in their experimental ionization constants and lipophilicity parameters. These differences are explained by molecular flexibility, configuration-dependent differences in intramolecular interactions, and accessibility of functional groups. Multiple linear equations correlated experimental lipophilicity parameters and ionization constants with PSA range and other calculated parameters. CONCLUSION: This study documents the differences in lipophilicity and ionization constants between diastereoisomeric dipeptides. Such configuration-dependent differences are shown to depend markedly on differences in conformational behavior and to be amenable to multiple linear regression. Chirality 24:566-576, 2012. © 2012 Wiley Periodicals, Inc.
Resumo:
Introduction : Doublecortin (DCX) is a microtubule associated protein expressed by migrating neural precursors. DCX is also expressed in approximately 4% of all cortical cells in adult normal primate brain. DCX expression is also enhanced locally in response to an acute insult made to the brain. This is thought to play a role in plasticity or neural repair. That being said, it would be interesting to know how the expression of DCX is modified in a more chronic insult, like in neurodegeneration such as in Parkinson's Disease (PD) and Alzheimer's Disease (AD). The aim of my study is to study the expression of DCX cells in the cortex of patients having a neurodegenerative disease, compared to control patients. Method: DCX cells quantification on 9 DCX‐stained 5 μm thick formalin fixed paraffin embedded brain sections: 3 Alzheimer's disease patients, 3 Parkinson's disease patients and 3 control patients. Each patient had several sections that we could stain with different stainings (GALLYA, TAU, DCX). By using a computerized image analysis system (Explora Nova, La Rochelle, France), cortical columns were selected on areas on the cortex with a lot of degeneration subjectively observed on GALLYA stained sections and on TAU stained sections. Then total number of cells was counted on TAU sections, where all nuclei were colored in blue. Then the DCX cells were counted on the corresponding DCX sections. These values were standardized to a reference surface area. The ratio of DCX cells over total cells was then calculated. Results : There is a difference of DCX cell expression between Alzheimer's Disease patients and control patients. The percentage of dcx cells in the cortex of an Alzheimer's patient is around 12.54% ± 2.17%, where as in the cortex of control patients, it is around 5.47% ± 0.83%. On the other hand, there is no significant difference in the ratio of DCX cells over total cells between parkinson's patients and control patients, both having around 5% of DCX cells. Discussion: There is a dramatic increase of DCX expression in AD (12.5%) compared to PD and controls (5.5%). The increase in DCX ratio in AD may have two potential causes: 1.The increased ratio is due to DCX cells being more resistant to degeneration compared to surrounding cells which are degenerating due to AD, leading to the cortical atrophy observed in AD patients. So the decrease of total cells without any change in the number of DCX cells makes the ratio bigger in AD compared to the controls. 2.The increased ratio is due to an actual increase in DCX cells. This means that there is some neural repair to compensate the degenerative process, just like the repair process observed in acute lesions to the brain. This second idea can be integrated in the broader point of view of neuroinflammation. The progression of the disease would trigger neuroinflammation and the process following the primary inflammatory response which is neural repair. So our study can show that the increase in DCX cells is an attempt to repair the degenerated neurons, in the context of neuroinflammation triggered by the physiopathological progression of the disease.
Resumo:
Nanotechnology encompasses the design, characterisation, production and application of materials and systems by controlling shape and size at the nanoscale (nanometres). Nanomaterials may differ from other materials because of their relatively large specific surface area, such that surface properties become particularly important. There has been rapid growth in investment in nanotechnology by both the public and private sectors worldwide. In the EU, nanotechnology is expected to become an important strategic contributor to achieving economic gain and societal and individual benefits. At the same time there is continuing scientific uncertainty and controversy about the safety of nanomaterials. It is important to ensure that timely policy development takes this into consideration. Uncertainty about safety may lead to polarised public debate and to business unwillingness to invest further. A clear regulatory framework to address potential health and environmental impacts, within the wider context of evaluating and communicating the benefit-risk balance, must be a core part of Europe's integrated efforts for nanotechnology innovation. While a number of studies have been carried out on the effect of environmental nanoparticles, e.g. from combustion processes, on human health, there is yet no generally acceptable paradigm for safety assessment of nanomaterials in consumer and other products. Therefore, a working group was established to consider issues for the possible impact of nanomaterials on human health focussing specifically on engineered nanomaterials. This represents the first joint initiative between EASAC and the Joint Research Centre of the European Commission. The working group was given the remit to describe the state of the art of benefits and potential risks, current methods for safety assessment, and to evaluate their relevance, identify knowledge gaps in studying the safety of current nanomaterials, and recommend on priorities for nanomaterial research and the regulatory framework. This report focuses on key principles and issues, cross-referencing other sources for detailed information, rather than attempting a comprehensive account of the science. The focus is on human health although environmental effects are also discussed when directly relevant to health
Resumo:
The spatial resolution visualized with hydrological models and the conceptualized images of subsurface hydrological processes often exceed resolution of the data collected with classical instrumentation at the field scale. In recent years it was possible to increasingly diminish the inherent gap to information from point like field data through the application of hydrogeophysical methods at field-scale. With regards to all common geophysical exploration techniques, electric and electromagnetic methods have arguably to greatest sensitivity to hydrologically relevant parameters. Of particular interest in this context are induced polarisation (IP) measurements, which essentially constrain the capacity of a probed subsurface region to store an electrical charge. In the absence of metallic conductors the IP- response is largely driven by current conduction along the grain surfaces. This offers the perspective to link such measurements to the characteristics of the solid-fluid-interface and thus, at least in unconsolidated sediments, should allow for first-order estimates of the permeability structure.¦While the IP-effect is well explored through laboratory experiments and in part verified through field data for clay-rich environments, the applicability of IP-based characterizations to clay-poor aquifers is not clear. For example, polarization mechanisms like membrane polarization are not applicable in the rather wide pore-systems of clay free sands, and the direct transposition of Schwarz' theory relating polarization of spheres to the relaxation mechanism of polarized cells to complex natural sediments yields ambiguous results.¦In order to improve our understanding of the structural origins of IP-signals in such environments as well as their correlation with pertinent hydrological parameters, various laboratory measurements have been conducted. We consider saturated quartz samples with a grain size spectrum varying from fine sand to fine gravel, that is grain diameters between 0,09 and 5,6 mm, as well as corresponding pertinent mixtures which can be regarded as proxies for widespread alluvial deposits. The pore space characteristics are altered by changing (i) the grain size spectra, (ii) the degree of compaction, and (iii) the level of sorting. We then examined how these changes affect the SIP response, the hydraulic conductivity, and the specific surface area of the considered samples, while keeping any electrochemical variability during the measurements as small as possible. The results do not follow simple assumptions on relationships to single parameters such as grain size. It was found that the complexity of natural occurring media is not yet sufficiently represented when modelling IP. At the same time simple correlation to permeability was found to be strong and consistent. Hence, adaptations with the aim of better representing the geo-structure of natural porous media were applied to the simplified model space used in Schwarz' IP-effect-theory. The resulting semi- empiric relationship was found to more accurately predict the IP-effect and its relation to the parameters grain size and permeability. If combined with recent findings about the effect of pore fluid electrochemistry together with advanced complex resistivity tomography, these results will allow us to picture diverse aspects of the subsurface with relative certainty. Within the framework of single measurement campaigns, hydrologiste can than collect data with information about the geo-structure and geo-chemistry of the subsurface. However, additional research efforts will be necessary to further improve the understanding of the physical origins of IP-effect and minimize the potential for false interpretations.¦-¦Dans l'étude des processus et caractéristiques hydrologiques des subsurfaces, la résolution spatiale donnée par les modèles hydrologiques dépasse souvent la résolution des données du terrain récoltées avec des méthodes classiques d'hydrologie. Récemment il est possible de réduire de plus en plus cet divergence spatiale entre modèles numériques et données du terrain par l'utilisation de méthodes géophysiques, notamment celles géoélectriques. Parmi les méthodes électriques, la polarisation provoquée (PP) permet de représenter la capacité des roches poreuses et des sols à stocker une charge électrique. En l'absence des métaux dans le sous-sol, cet effet est largement influencé par des caractéristiques de surface des matériaux. En conséquence les mesures PP offrent une information des interfaces entre solides et fluides dans les matériaux poreux que nous pouvons lier à la perméabilité également dirigée par ces mêmes paramètres. L'effet de la polarisation provoquée à été étudié dans différentes études de laboratoire, ainsi que sur le terrain. A cause d'une faible capacité de polarisation des matériaux sableux, comparé aux argiles, leur caractérisation par l'effet-PP reste difficile a interpréter d'une manière cohérente pour les environnements hétérogènes.¦Pour améliorer les connaissances sur l'importance de la structure du sous-sol sableux envers l'effet PP et des paramètres hydrologiques, nous avons fait des mesures de laboratoire variées. En détail, nous avons considéré des échantillons sableux de quartz avec des distributions de taille de grain entre sables fins et graviers fins, en diamètre cela fait entre 0,09 et 5,6 mm. Les caractéristiques de l'espace poreux sont changées en modifiant (i) la distribution de taille des grains, (ii) le degré de compaction, et (iii) le niveau d'hétérogénéité dans la distribution de taille de grains. En suite nous étudions comment ces changements influencent l'effet-PP, la perméabilité et la surface spécifique des échantillons. Les paramètres électrochimiques sont gardés à un minimum pendant les mesures. Les résultats ne montrent pas de relation simple entre les paramètres pétro-physiques comme par exemples la taille des grains. La complexité des media naturels n'est pas encore suffisamment représenté par les modèles des processus PP. Néanmoins, la simple corrélation entre effet PP et perméabilité est fort et consistant. En conséquence la théorie de Schwarz sur l'effet-PP a été adapté de manière semi-empirique pour mieux pouvoir estimer la relation entre les résultats de l'effet-PP et les paramètres taille de graines et perméabilité. Nos résultats concernant l'influence de la texture des matériaux et celles de l'effet de l'électrochimie des fluides dans les pores, permettront de visualiser des divers aspects du sous-sol. Avec des telles mesures géo-électriques, les hydrologues peuvent collectionner des données contenant des informations sur la structure et la chimie des fluides des sous-sols. Néanmoins, plus de recherches sur les origines physiques de l'effet-PP sont nécessaires afin de minimiser le risque potentiel d'une mauvaise interprétation des données.
Resumo:
Queens in social insect colonies advertise their presence in the colony to: a) attract workers' attention and care; b) gain acceptance by workers as replacement or supplemental reproductives; c) prevent reproductive development in nestmates. We analyzed the chemical content of whole body surface extracts of adult queens of different developmental and reproductive stages, and of adult workers from monogyne (single colony queen) and polygyne (multiple colony queens) forms of the fire ant Solenopsis invicta. We found that the composition of the most abundant components, venom alkaloids, differed between queens and workers, as well as between reproductive and non-reproductive queens. Additionally, workers of the two forms could be distinguished by alkaloid composition. Finally, sexually mature, non-reproductive queens from polygyne colonies differed in their proportions of cis-piperidine alkaloids, depending on their Gp-9 genotype, although the difference disappeared once they became functional reproductives. Among the unsaturated cuticular hydrocarbons characteristic of queens, there were differences in amounts of alkenes/alkadienes between non-reproductive polygyne queens of different Gp-9 genotypes, between non-reproductive and reproductive queens, and between polygyne and monogyne reproductive queens, with the amounts increasing at a relatively higher rate through reproductive ontogeny in queens bearing the Gp-9 b allele. Given that the genotype-specific piperidine differences reflect differences in rates of reproductive maturation between queens, we speculate that these abundant and unique compounds have been co-opted to serve in fertility signaling, while the cuticular hydrocarbons now play a complementary role in regulation of social organization by signaling queen Gp-9 genotype.
Resumo:
Infectious hepatitis C virus (HCV) particle assembly starts at the surface of lipid droplets, cytoplasmic organelles responsible for neutral fat storage. We analysed the relationship between HCV and seipin, a protein involved in lipid droplet maturation. Although seipin overexpression did not affect the total mean volume occupied by lipid droplets nor the total triglyceride and cholesterol ester levels per cell, it caused an increase in the mean diameter of lipid droplets by 60 %, while decreasing their total number per cell. The latter two effects combined resulted in a 34 % reduction of the total outer surface area of lipid droplets per cell, with a proportional decrease in infectious viral particle production, probably due to a defect in particle assembly. These results suggest that the available outer surface of lipid droplets is a critical factor for HCV release, independent of the neutral lipid content of the cell.
Resumo:
Burn injuries are very frequent, most being trifle cases. Nevertheless every year about 200 patients need to be treated in one of the two specialised Swiss burns centres. Admission criteria are burns > 15% body surface or burns to critical areas (face neck, hands, genitalia, joints) and electrical injuries. The paper reviews the physiophathology of the burn wound which differs depending on the thermal or electrical aetiology. The airway may be threatened due to true inhalation, but also to burns to the face or neck. In major burns >20% body surface in adults, or > 10% in children, fluid resuscitation will be required; oral hydration is generally sufficient by smaller burns. Surgical treatment of 2nd and 3rd degree burns starts within the first 24 days after injury. While complex treatment is generally available in peace time, a major accident such as a disco-fire that can generate hundreds casualties in a few minutes, can threaten our system and force the adoption of triage rules, and simplified treatments. Attitudes to adopt in such conditions are discussed.
Resumo:
To date, published studies of alluvial bar architecture in large rivers have been restricted mostly to case studies of individual bars and single locations. Relatively little is known about how the depositional processes and sedimentary architecture of kilometre-scale bars vary within a multi-kilometre reach or over several hundreds of kilometres downstream. This study presents Ground Penetrating Radar and core data from 11, kilometre-scale bars from the Rio Parana, Argentina. The investigated bars are located between 30km upstream and 540km downstream of the Rio Parana - Rio Paraguay confluence, where a significant volume of fine-grained suspended sediment is introduced into the network. Bar-scale cross-stratified sets, with lengths and widths up to 600m and thicknesses up to 12m, enable the distinction of large river deposits from stacked deposits of smaller rivers, but are only present in half the surface area of the bars. Up to 90% of bar-scale sets are found on top of finer-grained ripple-laminated bar-trough deposits. Bar-scale sets make up as much as 58% of the volume of the deposits in small, incipient mid-channel bars, but this proportion decreases significantly with increasing age and size of the bars. Contrary to what might be expected, a significant proportion of the sedimentary structures found in the Rio Parana is similar in scale to those found in much smaller rivers. In other words, large river deposits are not always characterized by big structures that allow a simple interpretation of river scale. However, the large scale of the depositional units in big rivers causes small-scale structures, such as ripple sets, to be grouped into thicker cosets, which indicate river scale even when no obvious large-scale sets are present. The results also show that the composition of bars differs between the studied reaches upstream and downstream of the confluence with the Rio Paraguay. Relative to other controls on downstream fining, the tributary input of fine-grained suspended material from the Rio Paraguay causes a marked change in the composition of the bar deposits. Compared to the upstream reaches, the sedimentary architecture of the downstream reaches in the top ca 5m of mid-channel bars shows: (i) an increase in the abundance and thickness (up to metre-scale) of laterally extensive (hundreds of metres) fine-grained layers; (ii) an increase in the percentage of deposits comprised of ripple sets (to >40% in the upper bar deposits); and (iii) an increase in bar-trough deposits and a corresponding decrease in bar-scale cross-strata (<10%). The thalweg deposits of the Rio Parana are composed of dune sets, even directly downstream from the Rio Paraguay where the upper channel deposits are dominantly fine-grained. Thus, the change in sedimentary facies due to a tributary point-source of fine-grained sediment is primarily expressed in the composition of the upper bar deposits.
Resumo:
Brake wear dust is a significant component of traffic emissions and has been linked to adverse health effects. Previous research found a strong oxidative stress response in cells exposed to freshly generated brake wear dust. We characterized aged dust collected from passenger vehicles, using microscopy and elemental analyses. Reactive oxygen species (ROS) generation was measured with acellular and cellular assays using 2′7-dichlorodihydrofluorescein dye. Microscopy analyses revealed samples to be heterogeneous particle mixtures with few nanoparticles detected. Several metals, primarily iron and copper, were identified. High oxygen concentrations suggested that the elements were oxidized. ROS were detected in the cell-free fluorescent test, while exposed cells were not dramatically activated by the concentrations used. The fact that aged brake wear samples have lower oxidative stress potential than fresh ones may relate to the highly oxidized or aged state of these particles, as well as their larger size and smaller reactive surface area.
Resumo:
Engineered nanomaterials (ENMs) exhibit special physicochemical properties and thus are finding their way into an increasing number of industries, enabling products with improved properties. Their increased use brings a greater likelihood of exposure to the nanoparticles (NPs) that could be released during the life cycle of nano-abled products. The field of nanotoxicology has emerged as a consequence of the development of these novel materials, and it has gained ever more attention due to the urgent need to gather information on exposure to them and to understand the potential hazards they engender. However, current studies on nanotoxicity tend to focus on pristine ENMs, and they use these toxicity results to generalize risk assessments on human exposure to NPs. ENMs released into the environment can interact with their surroundings, change characteristics and exhibit toxicity effects distinct from those of pristine ENMs. Furthermore, NPs' large surface areas provide extra-large potential interfaces, thus promoting more significant interactions between NPs and other co-existing species. In such processes, other species can attach to a NP's surface and modify its surface functionality, in addition to the toxicity in normally exhibits. One particular occupational health scenario involves NPs and low-volatile organic compounds (LVOC), a common type of pollutant existing around many potential sources of NPs. LVOC can coat a NP's surface and then dominate its toxicity. One important mechanism in nanotoxicology is the creation of reactive oxygen species (ROS) on a NP's surface; LVOC can modify the production of these ROS. In summary, nanotoxicity research should not be limited to the toxicity of pristine NPs, nor use their toxicity to evaluate the health effects of exposure to environmental NPs. Instead, the interactions which NPs have with other environmental species should also be considered and researched. The potential health effects of exposure to NPs should be derived from these real world NPs with characteristics modified by the environment and their distinct toxicity. Failure to suitably address toxicity results could lead to an inappropriate treatment of nano- release, affect the environment and public health and put a blemish on the development of sustainable nanotechnologies as a whole. The main objective of this thesis is to demonstrate a process for coating NP surfaces with LVOC using a well-controlled laboratory design and, with regard to these NPs' capacity to generate ROS, explore the consequences of changing particle toxicity. The dynamic coating system developed yielded stable and replicable coating performance, simulating an important realistic scenario. Clear changes in the size distribution of airborne NPs were observed using a scanning mobility particle sizer, were confirmed using both liquid nanotracking analyses and transmission electron microscopy (TEM) imaging, and were verified thanks to the LVOC coating. Coating thicknesses corresponded to the amount of coating material used and were controlled using the parameters of the LVOC generator. The capacity of pristine silver NPs (Ag NPs) to generate ROS was reduced when they were given a passive coating of inert paraffin: this coating blocked the reactive zones on the particle surfaces. In contrast, a coating of active reduced-anthraquinone contributed to redox reactions and generated ROS itself, despite the fact that ROS generation due to oxidation by Ag NPs themselves was quenched. Further objectives of this thesis included development of ROS methodology and the analysis of ROS case studies. Since the capacity of NPs to create ROS is an important effect in nanotoxicity, we attempted to refine and standardize the use of 2'7-dichlorodihydrofluorescin (DCFH) as a chemical tailored for the characterization of NPs' capacity for ROS generation. Previous studies had reported a wide variety of results, which were due to a number of insufficiently well controlled factors. We therefore cross-compared chemicals and concentrations, explored ways of dispersing NP samples in liquid solutions, identified sources of contradictions in the literature and investigated ways of reducing artificial results. The most robust results were obtained by sonicating an optimal sample of NPs in a DCFH-HRP solution made of 5,M DCFH and 0.5 unit/ml horseradish peroxidase (HRP). Our findings explained how the major reasons for previously conflicting results were the different experimental approaches used and the potential artifacts appearing when using high sample concentrations. Applying our advanced DCFH protocol with other physicochemical characterizations and biological analyses, we conducted several case studies, characterizing aerosols and NP samples. Exposure to aged brake wear dust engenders a risk of potential deleterious health effects in occupational scenarios. We performed microscopy and elemental analyses, as well as ROS measurements, with acellular and cellular DCFH assays. TEM images revealed samples to be heterogeneous mixtures with few particles in the nano-scale. Metallic and non-metallic elements were identified, primarily iron, carbon and oxygen. Moderate amounts of ROS were detected in the cell-free fluorescent tests; however, exposed cells were not dramatically activated. In addition to their highly aged state due to oxidation, the reason aged brake wear samples caused less oxidative stress than fresh brake wear samples may be because of their larger size and thus smaller relative reactive surface area. Other case studies involving welding fumes and differently charged NPs confirmed the performance of our DCFH assay and found ROS generation linked to varying characteristics, especially the surface functionality of the samples. Les nanomatériaux manufacturés (ENM) présentent des propriétés physico-chimiques particulières et ont donc trouvés des applications dans un nombre croissant de secteurs, permettant de réaliser des produits ayant des propriétés améliorées. Leur utilisation accrue engendre un plus grand risque pour les êtres humains d'être exposés à des nanoparticules (NP) qui sont libérées au long de leur cycle de vie. En conséquence, la nanotoxicologie a émergé et gagné de plus en plus d'attention dû à la nécessité de recueillir les renseignements nécessaires sur l'exposition et les risques associés à ces nouveaux matériaux. Cependant, les études actuelles sur la nanotoxicité ont tendance à se concentrer sur les ENM et utiliser ces résultats toxicologiques pour généraliser l'évaluation des risques sur l'exposition humaine aux NP. Les ENM libérés dans l'environnement peuvent interagir avec l'environnement, changeant leurs caractéristiques, et montrer des effets de toxicité distincts par rapport aux ENM originaux. Par ailleurs, la grande surface des NP fournit une grande interface avec l'extérieur, favorisant les interactions entre les NP et les autres espèces présentes. Dans ce processus, d'autres espèces peuvent s'attacher à la surface des NP et modifier leur fonctionnalité de surface ainsi que leur toxicité. Un scénario d'exposition professionnel particulier implique à la fois des NP et des composés organiques peu volatils (LVOC), un type commun de polluant associé à de nombreuses sources de NP. Les LVOC peuvent se déposer sur la surface des NP et donc dominer la toxicité globale de la particule. Un mécanisme important en nanotoxicologie est la création d'espèces réactives d'oxygène (ROS) sur la surface des particules, et les LVOC peuvent modifier cette production de ROS. En résumé, la recherche en nanotoxicité ne devrait pas être limitée à la toxicité des ENM originaux, ni utiliser leur toxicité pour évaluer les effets sur la santé de l'exposition aux NP de l'environnement; mais les interactions que les NP ont avec d'autres espèces environnementales doivent être envisagées et étudiées. Les effets possibles sur la santé de l'exposition aux NP devraient être dérivés de ces NP aux caractéristiques modifiées et à la toxicité distincte. L'utilisation de résultats de toxicité inappropriés peut conduire à une mauvaise prise en charge de l'exposition aux NP, de détériorer l'environnement et la santé publique et d'entraver le développement durable des industries de la nanotechnologie dans leur ensemble. L'objectif principal de cette thèse est de démontrer le processus de déposition des LVOC sur la surface des NP en utilisant un environnement de laboratoire bien contrôlé et d'explorer les conséquences du changement de toxicité des particules sur leur capacité à générer des ROS. Le système de déposition dynamique développé a abouti à des performances de revêtement stables et reproductibles, en simulant des scénarios réalistes importants. Des changements clairs dans la distribution de taille des NP en suspension ont été observés par spectrométrie de mobilité électrique des particules, confirmé à la fois par la méthode dite liquid nanotracking analysis et par microscopie électronique à transmission (MET), et a été vérifié comme provenant du revêtement par LVOC. La correspondance entre l'épaisseur de revêtement et la quantité de matériau de revêtement disponible a été démontré et a pu être contrôlé par les paramètres du générateur de LVOC. La génération de ROS dû aux NP d'argent (Ag NP) a été diminuée par un revêtement passif de paraffine inerte bloquant les zones réactives à la surface des particules. Au contraire, le revêtement actif d'anthraquinone réduit a contribué aux réactions redox et a généré des ROS, même lorsque la production de ROS par oxydation des Ag NP avec l'oxygène a été désactivé. Les objectifs associés comprennent le développement de la méthodologie et des études de cas spécifique aux ROS. Etant donné que la capacité des NP à générer des ROS contribue grandement à la nanotoxicité, nous avons tenté de définir un standard pour l'utilisation de 27- dichlorodihydrofluorescine (DCFH) adapté pour caractériser la génération de ROS par les NP. Des etudes antérieures ont rapporté une grande variété de résultats différents, ce qui était dû à un contrôle insuffisant des plusieurs facteurs. Nous avons donc comparé les produits chimiques et les concentrations utilisés, exploré les moyens de dispersion des échantillons HP en solution liquide, investigué les sources de conflits identifiées dans les littératures et étudié les moyens de réduire les résultats artificiels. De très bon résultats ont été obtenus par sonication d'une quantité optimale d'échantillons de NP en solution dans du DCFH-HRP, fait de 5 nM de DCFH et de 0,5 unité/ml de Peroxydase de raifort (HRP). Notre étude a démontré que les principales raisons causant les conflits entre les études précédemment conduites dans la littérature étaient dues aux différentes approches expérimentales et à des artefacts potentiels dus à des concentrations élevées de NP dans les échantillons. Utilisant notre protocole DCFH avancé avec d'autres caractérisations physico-chimiques et analyses biologiques, nous avons mené plusieurs études de cas, caractérisant les échantillons d'aérosols et les NP. La vielle poussière de frein en particulier présente un risque élevé d'exposition dans les scénarios professionnels, avec des effets potentiels néfastes sur la santé. Nous avons effectué des analyses d'éléments et de microscopie ainsi que la mesure de ROS avec DCFH cellulaire et acellulaire. Les résultats de MET ont révélé que les échantillons se présentent sous la forme de mélanges de particules hétérogènes, desquels une faible proportion se trouve dans l'échelle nano. Des éléments métalliques et non métalliques ont été identifiés, principalement du fer, du carbone et de l'oxygène. Une quantité modérée de ROS a été détectée dans le test fluorescent acellulaire; cependant les cellules exposées n'ont pas été très fortement activées. La raison pour laquelle les échantillons de vielle poussière de frein causent un stress oxydatif inférieur par rapport à la poussière de frein nouvelle peut-être à cause de leur plus grande taille engendrant une surface réactive proportionnellement plus petite, ainsi que leur état d'oxydation avancé diminuant la réactivité. D'autres études de cas sur les fumées de soudage et sur des NP différemment chargées ont confirmé la performance de notre test DCFH et ont trouvé que la génération de ROS est liée à certaines caractéristiques, notamment la fonctionnalité de surface des échantillons.
Resumo:
OBJECTIVES: The aims of the study were to use cone beam computed tomography (CBCT) images of nasopalatine duct cysts (NPDC) and to calculate the diameter, surface area, and 3D-volume using a custom-made software program. Furthermore, any associations of dimensions of NPDC with age, gender, presence/absence of maxillary incisors/canines (MI/MC), endodontic treatment of MI/MC, presenting symptoms, and postoperative complications were evaluated. MATERIAL AND METHODS: The study comprised 40 patients with a histopathologically confirmed NPDC. On preoperative CBCT scans, curves delineating the cystic borders were drawn in all planes and the widest diameter (in millimeter), surface area (in square millimeter), and volume (in cubic millimeter) were calculated. RESULTS: The overall mean cyst diameter was 15 mm (range 7-47 mm), the mean cyst surface area 566 mm(2) (84-4,516 mm(2)), and the mean cyst volume 1,735 mm(3) (65-25,350 mm(3)). For 22 randomly allocated cases, a second measurement resulted in a mean absolute aberration of ±4.2 % for the volume, ±2.8 % for the surface, and ±4.9 % for the diameter. A statistically significant association was found for the CBCT determined cyst measurements and the need for preoperative endodontic treatment to MI/MC and for postoperative complications. CONCLUSION: In the hands of a single experienced operator, the novel software exhibited high repeatability for measurements of cyst dimensions. Further studies are needed to assess the application of this tool for dimensional analysis of different jaw cysts and lesions including treatment planning. CLINICAL RELEVANCE: Accurate radiographic information of the bone volume lost (osteolysis) due to expansion of a cystic lesion in three dimensions could help in personalized treatment planning.
Resumo:
The oxidative potential (OP) of particulate matter has been proposed as a toxicologically relevant metric. This concept is already frequently used for hazard characterization of ambient particles but it is still seldom applied in the occupational field. The objective of this study was to assess the OP in two different types of workplaces and to investigate the relationship between the OP and the physicochemical characteristics of the collected particles. At a toll station, at the entrance of a tunnel ('Tunnel' site), and at three different mechanical yards ('Depot' sites), we assessed particle mass (PM4 and PM2.5 and size distribution), number and surface area, organic and elemental carbon, polycyclic aromatic hydrocarbon (PAH), and four quinones as well as iron and copper concentration. The OP was determined directly on filters without extraction by using the dithiothreitol assay (DTT assay-OP(DTT)). The averaged mass concentration of respirable particles (PM4) at the Tunnel site was about twice the one at the Depot sites (173±103 and 90±36 µg m(-3), respectively), whereas the OP(DTT) was practically identical for all the sites (10.6±7.2 pmol DTT min(-1) μg(-1) at the Tunnel site; 10.4±4.6 pmol DTT min(-1) μg(-1) at the Depot sites). The OP(DTT) of PM4 was mostly present on the smallest PM2.5 fraction (OP(DTT) PM2.5: 10.2±8.1 pmol DTT min(-1) μg(-1); OP(DTT) PM4: 10.5±5.8 pmol DTT min(-1) μg(-1) for all sites), suggesting the presence of redox inactive components in the PM2.5-4 fraction. Although the reactivity was similar at the Tunnel and Depot sites irrespective of the metric chosen (OP(DTT) µg(-1) or OP(DTT) m(-3)), the chemicals associated with OP(DTT) were different between the two types of workplaces. The organic carbon, quinones, and/or metal content (Fe, Cu) were strongly associated with the DTT reactivity at the Tunnel site whereas only Fe and PAH were associated (positively and negatively, respectively) with this reactivity at the Depot sites. These results demonstrate the feasibility of measuring of the OP(DTT) in occupational environments and suggest that the particulate OP(DTT) is integrative of different physicochemical properties. This parameter could be a potentially useful exposure proxy for investigating particle exposure-related oxidative stress and its consequences. Further research is needed mostly to demonstrate the association of OP(DTT) with relevant oxidative endpoints in humans exposed to particles.