133 resultados para Basal cell nevus syndrome


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arenaviruses are enveloped RNA viruses with a nonlytic life cycle that cause acute and persistent infections. Here, we investigated the role of the host cell's unfolded protein response (UPR) in infection of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). In mammalian cells, the endoplasmic reticulum (ER) chaperone protein GRP78/BiP functions as the principal sensor for the induction of the UPR and interacts with three mediators: kinase/endonuclease inositol-requiring protein 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Acute infection with LCMV resulted in a selective induction of the ATF6-regulated branch of the UPR, whereas pathways controlled by PERK and IRE1 were neither activated nor blocked. Expression of individual LCMV proteins revealed that the viral glycoprotein precursor (GPC), but not that of other viral proteins, was responsible for the induction of ATF6. Rapid downregulation of the viral GPC during transition from acute to persistent LCMV infection restored basal levels of UPR signaling. To address a possible role of ATF6 signaling in LCMV infection, we used cells deficient in site 2 protease (S2P), a metalloprotease required for the activation of ATF6. Cells deficient in S2P showed significantly lower levels of production of infectious virus during acute but not persistent infection, indicating a requirement for ATF6-mediated signaling for optimal virus multiplication. In summary, acute LCMV infection seems to selectively induce the ATF6-regulated branch of the UPR that is likely beneficial for virus replication and cell viability, but it avoids induction of PERK and IRE1, whose activation may be detrimental for virus and the host cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: This study compared the incidence of fatal and nonfatal AIDS and non-AIDS events in HIV-positive individuals with a CD4 cell count more than 350  cells/μl among viral load strata: low (<500  copies/ml), intermediate (500-9999.9  copies/ml) and high (≥ 10000  copies/ml). METHODS: Individuals contributed person-years at risk if their most recent CD4 cell count was more than 350  cells/μl. Follow-up was censored if their CD4 cell count dropped below 350  cells/μl. Poisson regression analysis investigated the relationship between viraemia and the incidence of AIDS and non-AIDS events. RESULTS: Three hundred and fifty-four AIDS events occurred during 51 732  person-years of follow-up (PYFU), crude incidence rate of AIDS across the three strata was 0.53, 0.90 and 2.12 per 100 PYFU, respectively. After adjustment, a higher rate of AIDS was observed in individuals with moderate [incidence rate ratio (IRR) 1.44, 1.02-2.05, P = 0.03] and high viraemia had a higher rate (IRR 3.91, 2.89-5.89, P < 0.0001) compared with low viraemia. Five hundred and seventy-two non-AIDS events occurred during 43 784 PYFU, the crude incidence rates were 1.28, 1.52, and 1.38 per 100 PYFU, respectively. After adjustment, particularly for age, region of Europe and starting combination antiretroviral therapy, there was a 61% (IRR 1.61, 1.21-2.14, P = 0.001) and 66% (IRR 1.66, 1.17-2.32, P = 0.004) higher rate of non-AIDS in individuals with intermediate and high viraemia compared with low viraemia. CONCLUSION: In individuals with a CD4 cell count more than 350  cells/μl, an increased incidence of AIDS and a slightly increased incidence of non-AIDS was found in those with uncontrolled viral replication. The association with AIDS was clear and consistent. However, the association with non-AIDS was only apparent after adjustment and no differences were observed between intermediate and high viraemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: The genesis of the cardiac action potential, which accounts for the cardiac contraction, is due to the sodium current INa mediated by the voltage-gated sodium channel Nav1.5. Several cardiac arrhythmias such as the Brugada syndrome are known te be caused by mutations in SCN5A, the gene encoding Nav1.5. Studies of these mutations allowed a better understanding of biophysical and functional properties of Nav1.5. However, only few investigations have been performed in order to understand the regulation of Nav1.5. During my thesis, I investigated different mechanisms of regulation of Nav1.5 using a heterologous expression system, HEK293 cells, coupled with a technique of sodium current recording: the patch clamp in whole cell configuration. In previous studies it has been shown that an enzyme of the Nedd4 family (Nedd4-2) regulates an epithelial sodium channel via the interaction with PY-motifs present in the latter. Interestingly, Nav1.5 contains a similar PY-motif, which motivated us to study the role of Nedd4-2 expressed in heart for the regulation of Nav1.5. In a second study, we investigated the implication of two Nav1.5 mutants, which were either less functional or net functional (Nav1.5 R535X and Nav1.5 L325R respectively) implied in the genesis of the Brugada syndrome by fever. Our results established two mechanisms implied in Nav1.5 regulation. The first one implies that following the interaction between the PY-motif of Nav1.5 and Nedd4- 2 Nav1.5 is ubiquitinated by Nedd4-2. This ubiquitination leads to the internalization of Nav1 .5. The second mechanism is a phenomenon called the "dominant negative" effect of Nav1.5 L325R on Nay1.5 where the decrease of 'Na is potentially due to the retention of Nav1.5 by Nav1.5 L325R in an undefined intracellular compartment. These studies defined two mechanisms of Nav1.5 regulation, which could play an important role for the genesis of cardiac arrhythmias where molecular processes are still poorly understood. Résumé La genèse du potentiel d'action cardiaque, permettant la contraction cardiaque, est due au courant sodique INa issu des canaux sodiques cardiaques dépendants du voltage Nav1.5. Nombreuses arythmies cardiaques telles que le syndrome de Brugada sont connues pour être liées à des mutations du gène SCN5A, codant pour Nav1.5. L'étude de ces mutations a permis une meilleure compréhension des propriétés structurelles et fonctionnelles de Nav1.5 et leurs implications dans la genèse de ces pathologies. Néanmoins peu d'études ont été menées afin de comprendre les mécanismes de régulation de Nav1.5. Mon travail de thèse a consisté à étudier des mécanismes de régulation de Nav1.5 en utilisant un système d'expression hétérologue, les cellules HEK293, couplé à une technique d'enregistrement des courants sodiques, le "patch clamp" en configuration cellule entière. La présence sur Nav1.5 d'un motif-PY similaire à ceux nécessaires pour la régulation d'un canal épithélial sodique par une enzyme de la famille de Nedd4, nous a amenée à étudier le rôle de ces ubiquitine-ligases, en particulier Nedd4-2, dans la régulation de Nav1.5. La seconde étude s'est intéressée aux conséquences de deux mutations de SCN5A codant pour deux mutants peu ou pas fonctionnels (Nav1.5 L325R et Nav1.5 R535X respectivement) retrouvées chez des patients présentant un syndrome de Brugada exacerbé par un état fébrile. Nos résultats ont permis d'établir deux mécanismes de régulation de Nav1.5 L'un par Nedd4-2 qui implique rubiquitination de Nav1.5 par cette ligase suite à l'interaction entre le motif-PY de Nav1.5 et Nedd4-2. Cette modification déclenche l'internalisation du canal impliquée dans la diminution d'INa. Le second mécanisme quant à lui est un effet "dominant négatif" de Nav1.5 L325R sur Nav1.5 aboutissant à une diminution d'INa suite à la séquestration intracellulaire potentielle de Nav1.5 par Nav1.5 L325R. Ces études ont mis en évidence deux mécanismes de régulation de Nav1.5 pouvant jouer un rôle majeur dans la genèse et/ou l'accentuation des arythmies cardiaques dont les processus moléculaires au sein des cardiomyocytes, impliquant des modifications du courant sodiques, sont encore mal compris. Résumé destiné à un large public La dépolarisation électrique de la membrane des cellules cardiaques permet la contraction du coeur. La génèse de cette activité électrique est due au courant sodique issu d'un type de canal à sodium situé dans la membrane des cellules cardiaques. De nombreuses pathologies provoquant des troubles du rythme cardiaque sont issues de mutations du gène qui code pour ce canal à sodium. Ces canaux mutants, entrainant diverses pathologies cardiaques telles que le syndrome de Brugada, ont été largement étudiées. Néanmoins, peu de travaux ont été réalisés sur les mécanismes de régulation de ce canal à sodium non muté. Mon travail de thèse a consisté à étudier certains des mécanismes de régulation de ce canal à sodium en utilisant une technique permettant l'enregistrement des courants sodiques issus de l'expression de ces canaux à sodium à la membrane de cellules mammifères. La présence sur ce canal à sodium d'une structure spécifique, similaire à celle nécessaire pour la régulation d'un canal épithélial à sodium par une enzyme appelée Nedd4-2, nous a amenée à étudier le rôle de cette enzyme dans la régulation de ce canal à sodium. La seconde étude s'est intéressée aux rôles de deux mutations du gène codant pour ce canal à sodium retrouvées chez des patients présentant un syndrome de Brugada exacerbé par la fièvre. Nos résultats nous ont permis d'établir deux mécanismes de régulation de ce canal à sodium diminuant le courant sodique l'un par l'action de l'enzyme Nedd4-2, suite à son interaction avec ce canal, qui modifie ce canal à sodium (ubiquitination) diminuant de ce fait la densité membranaire du canal. L'autre par un mécanisme suggérant un effet négatif de l'un des canaux mutants sur l'expression à la membrane du canal à sodium non muté. Ces études ont mis en évidence deux mécanismes de régulation de ce canal à sodium pouvant jouer un rôle majeur dans la genèse et/ou l'accentuation des troubles du rythme cardiaques dont les mécanismes cellulaires sont encore incompris.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In celiac disease, enhanced permeability to gliadin peptides can result from their apico-basal transport by secretory immunoglobulin A1 (SIgA1) binding to the CD71 receptor ectopically expressed at the gut epithelial surface. Herein, we have established a mouse model in which there is apico-basal transport of the model antigen ovalbumin (OVA) by specific SIgA1 and have analyzed local T-cell activation. Transgenic DO11.10 mice were grafted with a hybridoma-secreting OVA-specific humanized IgA1, which could bind mouse CD71 and which were released in the intestinal lumen as SIgA. CD71 expression was induced at the gut apical surface by treating the mice with tyrphostin A8. Following gavage of the mice with OVA, OVA-specific CD4(+) T cells isolated from the mesenteric lymph nodes displayed higher expression of the activation marker CD69 and produced more interferon gamma in mice bearing the hybridoma-secreting OVA-specific IgA1, than in ungrafted mice or in mice grafted with an irrelevant hybridoma. These results indicate that the protective role of SIgA1 might be jeopardized in human pathological conditions associated with ectopic expression of CD71 at the gut surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome, which is characterized by cleft palate and severe defects of the skin, is an autosomal dominant disorder caused by mutations in the gene encoding transcription factor p63. Here, we report the generation of a knock-in mouse model for AEC syndrome (p63(+/L514F) ) that recapitulates the human disorder. The AEC mutation exerts a selective dominant-negative function on wild-type p63 by affecting progenitor cell expansion during ectodermal development leading to a defective epidermal stem cell compartment. These phenotypes are associated with impairment of fibroblast growth factor (FGF) signalling resulting from reduced expression of Fgfr2 and Fgfr3, direct p63 target genes. In parallel, a defective stem cell compartment is observed in humans affected by AEC syndrome and in Fgfr2b(-/-) mice. Restoring Fgfr2b expression in p63(+/L514F) epithelial cells by treatment with FGF7 reactivates downstream mitogen-activated protein kinase signalling and cell proliferation. These findings establish a functional link between FGF signalling and p63 in the expansion of epithelial progenitor cells and provide mechanistic insights into the pathogenesis of AEC syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cuticle is a physical barrier that prevents water loss and protects against irradiation, xenobiotics and pathogens. This classic textbook statement has recently been revisited and several observations were made showing that this dogma falls short of being universally true. Both transgenic Arabidopsis thaliana lines expressing cell wall-targeted fungal cutinase (so-called CUTE plants) or lipase as well as several A. thaliana mutants with altered cuticular structure remained free of symptoms after an inoculation with Botrytis cinerea. The alterations in cuticular structure lead to the release of fungitoxic substances and changes in gene expression that form a multifactorial defence response. Several models to explain this syndrome are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Aims. Recently, peripheral blood mononuclear cell transcriptome analysis has identified genes that are upregulated in relapsing minimal-change nephrotic syndrome (MCNS). In order to investigate protein expression in peripheral blood mononuclear cells (PBMC) from relapsing MCNS patients, we performed proteomic comparisons of PBMC from patients with MCNS in relapse and controls. METHODS: PBMC from a total of 20 patients were analysed. PBMC were taken from five patients with relapsing MCNS, four in remission, five patients with other glomerular diseases and six controls. Two dimensional electrophoresis was performed and proteome patterns were compared. RESULTS: Automatic heuristic clustering analysis allowed us to pool correctly the gels from the MCNS patients in the relapse and in the control groups. Using hierarchical population matching, nine spots were found to be increased in PBMC from MCNS patients in relapse. Four spots were identified by mass spectrometry. Three of the four proteins identified (L-plastin, alpha-tropomyosin and annexin III) were cytoskeletal-associated proteins. Using western blot and immunochemistry, L-plastin and alpha-tropomyosin 3 concentrations were found to be enhanced in PBMC from MCNS patients in relapse. Conclusions. These data indicate that a specific proteomic profile characterizes PBMC from MCNS patients in relapse. Proteins involved in PBMC cytoskeletal rearrangement are increased in relapsing MCNS. We hypothesize that T-cell cytoskeletal rearrangement may play a role in the pathogenesis of MCNS by altering the expression of cell surface receptors and by modifying the interaction of these cells with glomerular cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Brugada syndrome (BrS) is characterized by arrhythmias leading to sudden cardiac death. BrS is caused, in part, by mutations in the SCN5A gene, which encodes the sodium channel alpha-subunit Na(v)1.5. Here, we aimed to characterize the biophysical properties and consequences of a novel BrS SCN5A mutation. METHODS AND RESULTS: SCN5A was screened for mutations in a male patient with type-1 BrS pattern ECG. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in HEK293 cells. Sodium currents (I(Na)) were analysed using the whole-cell patch-clamp technique at 37 degrees C. The electrophysiological effects of the mutation were simulated using the Luo-Rudy model, into which the transient outward current (I(to)) was incorporated. A new mutation (C1850S) was identified in the Na(v)1.5 C-terminal domain. In HEK293 cells, mutant I(Na) density was decreased by 62% at -20 mV. Inactivation of mutant I(Na) was accelerated in a voltage-dependent manner and the steady-state inactivation curve was shifted by 11.6 mV towards negative potentials. No change was observed regarding activation characteristics. Altogether, these biophysical alterations decreased the availability of I(Na). In the simulations, the I(to) density necessary to precipitate repolarization differed minimally between the two genotypes. In contrast, the mutation greatly affected conduction across a structural heterogeneity and precipitated conduction block. CONCLUSION: Our data confirm that mutations of the C-terminal domain of Na(v)1.5 alter the inactivation of the channel and support the notion that conduction alterations may play a significant role in the pathogenesis of BrS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lung cancer is the most frequent cause of superior vena cava (SVC) syndrome. Malignant SVC syndrome is generally considered a contraindication to curative resection, although palliative bypasses are done for symptoms that do not respond to medical therapy. However, a majority of patients with such advanced disease die of complications caused by the primary tumor rather than distant metastasis. We present the case of one patient with lung cancer invading the mediastinal structures. Combined resection and replacement of the SVC with a segment of Dacron vascular graft was performed. Postoperative survival time was 24 months.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water balance is achieved through the ability of the kidney to control water reabsorption in the connecting tubule and the collecting duct. In a mouse cortical collecting duct cell line (mCCD(c11)), physiological concentrations of arginine vasopressin increased both electrogenic, amiloride-sensitive, epithelial sodium channel (ENaC)-mediated sodium transport measured by the short-circuit current (Isc) method and water flow (Jv apical to basal) measured by gravimetry with similar activation coefficient K(1/2) (6 and 12 pM, respectively). Jv increased linearly according to the osmotic gradient across the monolayer. A small but highly significant Jv was also measured under isoosmotic conditions. To test the coupling between sodium reabsorption and water flow, mCCD(c11) cells were treated for 24 h under isoosmotic condition with either diluent, amiloride, vasopressin or vasopressin and amiloride. Isc, Jv, and net chemical sodium fluxes were measured across the same monolayers. Around 30% of baseline and 50% of vasopressin-induced water flow is coupled to an amiloride-sensitive, ENaC-mediated, electrogenic sodium transport, whereas the remaining flow is coupled to an amiloride-insensitive, nonelectrogenic sodium transport mediated by an unknown electroneutral transporter. The mCCD(c11) cell line is a first example of a mammalian tight epithelium allowing quantitative study of the coupling between sodium and water transport. Our data are consistent with the 'near isoosmotic' fluid transport model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to the ubiquitous apical-basal polarity, epithelial cells are often polarized within the plane of the tissue - the phenomenon known as planar cell polarity (PCP). In Drosophila, manifestations of PCP are visible in the eye, wing, and cuticle. Several components of the PCP signaling have been characterized in flies and vertebrates, including the heterotrimeric Go protein. However, Go signaling partners in PCP remain largely unknown. Using a genetic screen we uncover Kermit, previously implicated in G protein and PCP signaling, as a novel binding partner of Go. Through pull-down and genetic interaction studies, we find that Kermit interacts with Go and another PCP component Vang, known to undergo intracellular relocalization during PCP establishment. We further demonstrate that the activity of Kermit in PCP differentially relies on the motor proteins: the microtubule-based dynein and kinesin motors and the actin-based myosin VI. Our results place Kermit as a potential transducer of Go, linking Vang with motor proteins for its delivery to dedicated cellular compartments during PCP establishment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using exome sequencing and a variant prioritization strategy that focuses on loss-of-function variants, we identified biallelic, loss-of-function CEP57 mutations as a cause of constitutional mosaic aneuploidies. CEP57 is a centrosomal protein and is involved in nucleating and stabilizing microtubules. Our findings indicate that these and/or additional functions of CEP57 are crucial for maintaining correct chromosomal number during cell division.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the impact of corticosteroids (CS) on the viral-specific T-cell response, in particular the JC virus (JCV)-specific one, in an attempt to determine the optimal timing of CS in the management of progressive multifocal leukoencephalopathy-immune reconstitution inflammatory syndrome (PML-IRIS). METHODS: A blood draw was performed before and 7 days after the administration of IV CS to 24 patients with relapsing multiple sclerosis (MS). The phenotypic pattern of T cells was determined by CCR7 and CD45RA. To assess the impact of CS treatment on proliferative response of JCV-, influenza-, and Epstein-Barr virus (EBV)-specific T cells, a thymidine incorporation proliferation assay was performed. An intracellular cytokine staining assay was performed to determine the effect of CS treatment on the production of cytokine by virus-specific T cells. JCV T-cell assays were performed only in JCV-infected patients with MS as detected by serologies (Stratify) or detection of JCV DNA in the urine by PCR. RESULTS: CS led T cells, CD4+ and CD8+, toward a less differentiated phenotype. There was a significant decrease of EBV-, influenza-, and JCV-specific T-cell proliferative response upon CS treatment. There was a significant decrease in the frequency of interferon (IFN) γ- and tumor necrosis factor (TNF) α-producing JCV-specific CD8+ T cells, but not EBV- or influenza-specific CD4+ or CD8+ T cells. CONCLUSIONS: CS have a profound impact on the virus-specific T-cell response, especially on JCV, suggesting that when CS are considered, they should not be given before the onset of clinical or radiologic signs of IRIS. Studies addressing directly patients with MS with natalizumab-caused PML are warranted. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that methylprednisolone treatment decreases the frequency of JCV-specific CD8+ T cells producing IFN-γ and TNFα, impairing control of JCV, suggesting this should be used to treat but not to prevent PML-IRIS. No clinical outcomes were measured.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: The metabolic syndrome comprises a clustering of cardiovascular risk factors but the underlying mechanism is not known. Mice with targeted disruption of endothelial nitric oxide synthase (eNOS) are hypertensive and insulin resistant. We wondered, whether eNOS deficiency in mice is associated with a phenotype mimicking the human metabolic syndrome. METHODS AND RESULTS: In addition to arterial pressure and insulin sensitivity (euglycaemic hyperinsulinaemic clamp), we measured the plasma concentration of leptin, insulin, cholesterol, triglycerides, free fatty acids, fibrinogen and uric acid in 10 to 12 week old eNOS-/- and wild type mice. We also assessed glucose tolerance under basal conditions and following a metabolic stress with a high fat diet. As expected eNOS-/- mice were hypertensive and insulin resistant, as evidenced by fasting hyperinsulinaemia and a roughly 30 percent lower steady state glucose infusion rate during the clamp. eNOS-/- mice had a 1.5 to 2-fold elevation of the cholesterol, triglyceride and free fatty acid plasma concentration. Even though body weight was comparable, the leptin plasma level was 30% higher in eNOS-/- than in wild type mice. Finally, uric acid and fibrinogen were elevated in the eNOS-/- mice. Whereas under basal conditions, glucose tolerance was comparable in knock out and control mice, on a high fat diet, knock out mice became significantly more glucose intolerant than control mice. CONCLUSIONS: A single gene defect, eNOS deficiency, causes a clustering of cardiovascular risk factors in young mice. We speculate that defective nitric oxide synthesis could trigger many of the abnormalities making up the metabolic syndrome in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: A 26-year-old man with a history of Crohn's disease, treated with azathioprine since 2 years, presented an Epstein-Barr virus (EBV) primo-infection and exacerbation of digestive symptoms. Method: An ileo-colectomy was performed, which showed a fatal EBV lymphoproliferation disorder along with a haemophagocytic syndrome. EBV DNA load in the peripheral blood persisted to be high loaded during hospitalisation (479,000 copies per milliliter) despite triple antiviral treatment. Results: Autopsy revealed a systemic lymphoproliferation involving lymph nodes, gastrointestinal mucosa and solid viscera (heart, kidney, lungs, prostate, brain). This was compounded of a population of large polymorphic B cell, hypertrophic macrophages and T lymphocytes, associated to haemophagocytosis. These massive infiltrations mimicked macroscopically as ulcers in the intestinal mucosa and ranged from polymorphic with plasmocytic differentiation to monomorphic large cells. Autopsy results confirmed the absence of Crohn's disease reactivation. The EBV infection was observed in all organs within the large images of the B cell lymphoproliferations. Further postmortem investigations revealed a deficit of the azathioprine's metabolisation enzyme thiopurine methyltransferase (TPMT). Conclusion: We report and discuss herein the observations of a complete autopsy case along with the postmortem identification of the EBV infection type and TPMT mutation in a patient treated by azathioprine for Crohn's disease. Autopsy findings and further investigations helped explain the complicate clinical evolution and the fatal issue of the patient.