178 resultados para Analyses errors
Resumo:
This study examined the validity and reliability of the French version of two observer-rated measures developed to assess cognitive errors (cognitive errors rating system [CERS]) [6] and coping action patterns (coping action patterns rating system [CAPRS]) [22,24]. The CE measures 14 cognitive errors, broken down according to their valence positive or negative (see the definitions by A.T. Beck), and the CAP measures 12 coping categories, based on an comprehensive review literature, each broken down into three levels of action (affective, behavioural, cognitive). Thirty (N = 30) subjects recruited in a community sample participated in the study. They were interviewed according to a standardized clinical protocol: these interviews were transcribed and analysed with both observer-rated systems. Results showed that the inter-rater reliability of the two measures is good and that their internal validity is satisfactory, due to a non-significant canonical correlation between CAP and CE. With regard to discriminant validity, we found a non-significant canonical correlation between CAPRS and CISS, one of most widely used self-report questionnaire measuring coping. The same can be said for the correlation with a self-report questionnaire measuring symptoms (SCL-90-R). These results confirm the absence of confounds in the assessment of cognitive errors and of coping as assessed by these observer-rated scales and add an argument in favour of the French validation of the CE-CAP rating scales. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
La surveillance et la maîtrise des coûts liés aux analyses ADN sont très importants, surtout dans un contexte où les ressources financières ne sont pas illimitées. Des décisions quant à la priorisation des prélèvements à analyser s'imposent. La connaissance de l'aspect budgétaire est un des éléments qui peut aider à la prise de décision. Après un bref rappel des bases légales en matière d'analyses ADN en Suisse et de l'évolution législative de ces dernières années, l'article présente différents aspects financiers liés aux analyses ADN. De l'importance des sommes investies dans ces analyses et souvent méconnues dans leur globalité, même au sein des acteurs de la chaîne pénale, aux efforts faits pour optimiser les dépenses liées aux analyses ADN. Des actions sur différents facteurs qui portent sur la communication entre le laboratoire et le mandant des analyses, les changements dans le mode et les stratégies de prélèvements, ou l'utilisation de tests indicatifs moins chers qu'une analyse, nous ont permis d'optimiser nos dépenses pour obtenir plus de résultats positifs.
Resumo:
Selective pressures related to gene function and chromosomal architecture are acting on genome sequences and can be revealed, for instance, by appropriate genometric methods. Cumulative nucleotide skew analyses, i.e., GC, TA, and ORF orientation skews, predict the location of the origin of DNA replication for 88 out of 100 completely sequenced bacterial chromosomes. These methods appear fully reliable for proteobacteria, Gram-positives, and spirochetes as well as for euryarchaeotes. Based on this genome architecture information, coorientation analyses reveal that in prokaryotes, ribosomal RNA (rRNA) genes encoding the small and large ribosomal subunits are all transcribed in the same direction as DNA replication; that is, they are located along the leading strand. This result offers a simple and reliable method for circumscribing the region containing the origin of the DNA replication and reveals a strong selective pressure acting on the orientation of rRNA genes similar to the weaker one acting on the orientation of ORFs. Rate of coorientation of transfer RNA (tRNA) genes with DNA replication appears to be taxon-specific. Analyzing nucleotide biases such as GC and TA skews of genes and plotting one against the other reveals a taxonomic clusterization of species. All ribosomal RNA genes are enriched in Gs and depleted in Cs, the only so far known exception being the rRNA genes of deuterostomian mitochondria. However, this exception can be explained by the fact that in the chromosome of the human mitochondrion, the model of the deuterostomian organelle genome, DNA replication, and rRNA transcription proceed in opposite directions. A general rule is deduced from prokaryotic and mitochondrial genomes: ribosomal RNA genes that are transcribed in the same direction as the DNA replication are enriched in Gs, and those transcribed in the opposite direction are depleted in Gs.
Resumo:
BACKGROUND: Differences in morbidity and mortality between socioeconomic groups constitute one of the most consistent findings of epidemiologic research. However, research on social inequalities in health has yet to provide a comprehensive understanding of the mechanisms underlying this association. In recent analysis, we showed health behaviours, assessed longitudinally over the follow-up, to explain a major proportion of the association of socioeconomic status (SES) with mortality in the British Whitehall II study. However, whether health behaviours are equally important mediators of the SES-mortality association in different cultural settings remains unknown. In the present paper, we examine this issue in Whitehall II and another prospective European cohort, the French GAZEL study. METHODS AND FINDINGS: We included 9,771 participants from the Whitehall II study and 17,760 from the GAZEL study. Over the follow-up (mean 19.5 y in Whitehall II and 16.5 y in GAZEL), health behaviours (smoking, alcohol consumption, diet, and physical activity), were assessed longitudinally. Occupation (in the main analysis), education, and income (supplementary analysis) were the markers of SES. The socioeconomic gradient in smoking was greater (p<0.001) in Whitehall II (odds ratio [OR] = 3.68, 95% confidence interval [CI] 3.11-4.36) than in GAZEL (OR = 1.33, 95% CI 1.18-1.49); this was also true for unhealthy diet (OR = 7.42, 95% CI 5.19-10.60 in Whitehall II and OR = 1.31, 95% CI 1.15-1.49 in GAZEL, p<0.001). Socioeconomic differences in mortality were similar in the two cohorts, a hazard ratio of 1.62 (95% CI 1.28-2.05) in Whitehall II and 1.94 in GAZEL (95% CI 1.58-2.39) for lowest versus highest occupational position. Health behaviours attenuated the association of SES with mortality by 75% (95% CI 44%-149%) in Whitehall II but only by 19% (95% CI 13%-29%) in GAZEL. Analysis using education and income yielded similar results. CONCLUSIONS: Health behaviours were strong predictors of mortality in both cohorts but their association with SES was remarkably different. Thus, health behaviours are likely to be major contributors of socioeconomic differences in health only in contexts with a marked social characterisation of health behaviours. Please see later in the article for the Editors' Summary.
Resumo:
AIMS: Brugada syndrome (BrS) is characterized by arrhythmias leading to sudden cardiac death. BrS is caused, in part, by mutations in the SCN5A gene, which encodes the sodium channel alpha-subunit Na(v)1.5. Here, we aimed to characterize the biophysical properties and consequences of a novel BrS SCN5A mutation. METHODS AND RESULTS: SCN5A was screened for mutations in a male patient with type-1 BrS pattern ECG. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in HEK293 cells. Sodium currents (I(Na)) were analysed using the whole-cell patch-clamp technique at 37 degrees C. The electrophysiological effects of the mutation were simulated using the Luo-Rudy model, into which the transient outward current (I(to)) was incorporated. A new mutation (C1850S) was identified in the Na(v)1.5 C-terminal domain. In HEK293 cells, mutant I(Na) density was decreased by 62% at -20 mV. Inactivation of mutant I(Na) was accelerated in a voltage-dependent manner and the steady-state inactivation curve was shifted by 11.6 mV towards negative potentials. No change was observed regarding activation characteristics. Altogether, these biophysical alterations decreased the availability of I(Na). In the simulations, the I(to) density necessary to precipitate repolarization differed minimally between the two genotypes. In contrast, the mutation greatly affected conduction across a structural heterogeneity and precipitated conduction block. CONCLUSION: Our data confirm that mutations of the C-terminal domain of Na(v)1.5 alter the inactivation of the channel and support the notion that conduction alterations may play a significant role in the pathogenesis of BrS.
Resumo:
For the last decade, high-resolution (HR)-MS has been associated with qualitative analyses while triple quadrupole MS has been associated with routine quantitative analyses. However, a shift of this paradigm is taking place: quantitative and qualitative analyses will be increasingly performed by HR-MS, and it will become the common 'language' for most mass spectrometrists. Most analyses will be performed by full-scan acquisitions recording 'all' ions entering the HR-MS with subsequent construction of narrow-width extracted-ion chromatograms. Ions will be available for absolute quantification, profiling and data mining. In parallel to quantification, metabotyping will be the next step in clinical LC-MS analyses because it should help in personalized medicine. This article is aimed to help analytical chemists who perform targeted quantitative acquisitions with triple quadrupole MS make the transition to quantitative and qualitative analyses using HR-MS. Guidelines for the acceptance criteria of mass accuracy and for the determination of mass extraction windows in quantitative analyses are proposed.
Resumo:
Introduction: Responses to external stimuli are typically investigated by averaging peri-stimulus electroencephalography (EEG) epochs in order to derive event-related potentials (ERPs) across the electrode montage, under the assumption that signals that are related to the external stimulus are fixed in time across trials. We demonstrate the applicability of a single-trial model based on patterns of scalp topographies (De Lucia et al, 2007) that can be used for ERP analysis at the single-subject level. The model is able to classify new trials (or groups of trials) with minimal a priori hypotheses, using information derived from a training dataset. The features used for the classification (the topography of responses and their latency) can be neurophysiologically interpreted, because a difference in scalp topography indicates a different configuration of brain generators. An above chance classification accuracy on test datasets implicitly demonstrates the suitability of this model for EEG data. Methods: The data analyzed in this study were acquired from two separate visual evoked potential (VEP) experiments. The first entailed passive presentation of checkerboard stimuli to each of the four visual quadrants (hereafter, "Checkerboard Experiment") (Plomp et al, submitted). The second entailed active discrimination of novel versus repeated line drawings of common objects (hereafter, "Priming Experiment") (Murray et al, 2004). Four subjects per experiment were analyzed, using approx. 200 trials per experimental condition. These trials were randomly separated in training (90%) and testing (10%) datasets in 10 independent shuffles. In order to perform the ERP analysis we estimated the statistical distribution of voltage topographies by a Mixture of Gaussians (MofGs), which reduces our original dataset to a small number of representative voltage topographies. We then evaluated statistically the degree of presence of these template maps across trials and whether and when this was different across experimental conditions. Based on these differences, single-trials or sets of a few single-trials were classified as belonging to one or the other experimental condition. Classification performance was assessed using the Receiver Operating Characteristic (ROC) curve. Results: For the Checkerboard Experiment contrasts entailed left vs. right visual field presentations for upper and lower quadrants, separately. The average posterior probabilities, indicating the presence of the computed template maps in time and across trials revealed significant differences starting at ~60-70 ms post-stimulus. The average ROC curve area across all four subjects was 0.80 and 0.85 for upper and lower quadrants, respectively and was in all cases significantly higher than chance (unpaired t-test, p<0.0001). In the Priming Experiment, we contrasted initial versus repeated presentations of visual object stimuli. Their posterior probabilities revealed significant differences, which started at 250ms post-stimulus onset. The classification accuracy rates with single-trial test data were at chance level. We therefore considered sub-averages based on five single trials. We found that for three out of four subjects' classification rates were significantly above chance level (unpaired t-test, p<0.0001). Conclusions: The main advantage of the present approach is that it is based on topographic features that are readily interpretable along neurophysiologic lines. As these maps were previously normalized by the overall strength of the field potential on the scalp, a change in their presence across trials and between conditions forcibly reflects a change in the underlying generator configurations. The temporal periods of statistical difference between conditions were estimated for each training dataset for ten shuffles of the data. Across the ten shuffles and in both experiments, we observed a high level of consistency in the temporal periods over which the two conditions differed. With this method we are able to analyze ERPs at the single-subject level providing a novel tool to compare normal electrophysiological responses versus single cases that cannot be considered part of any cohort of subjects. This aspect promises to have a strong impact on both basic and clinical research.
Resumo:
This paper discusses five strategies to deal with five types of errors in Qualitative Comparative Analysis (QCA): condition errors, systematic errors, random errors, calibration errors, and deviant case errors. These strategies are the comparative inspection of complex, intermediary, and parsimonious solutions; the use of an adjustment factor, the use of probabilistic criteria, the test of the robustness of calibration parameters, and the use of a frequency threshold for observed combinations of conditions. The strategies are systematically reviewed, assessed, and evaluated as regards their applicability, advantages, limitations, and complementarities.
Resumo:
The fatty acids from cocoa butters of different origins, varieties, and suppliers and a number of cocoa butter equivalents (Illexao 30-61, Illexao 30-71, Illexao 30-96, Choclin, Coberine, Chocosine-Illipe, Chocosine-Shea, Shokao, Akomax, Akonord, and Ertina) were investigated by bulk stable carbon isotope analysis and compound specific isotope analysis. The interpretation is based on principal component analysis combining the fatty acid concentrations and the bulk and molecular isotopic data. The scatterplot of the two first principal components allowed detection of the addition of vegetable fats to cocoa butters. Enrichment in heavy carbon isotope (C-13) of the bulk cocoa butter and of the individual fatty acids is related to mixing with other vegetable fats and possibly to thermally or oxidatively induced degradation during processing (e.g., drying and roasting of the cocoa beans or deodorization of the pressed fat) or storage. The feasibility of the analytical approach for authenticity assessment is discussed.
Resumo:
La question du filtrage de ľinformation génétique dans la cellule est fondamentale. Comment la cellule sélectionne-t-elle, avant de les transformer en RNA puis en protéines, certaines parties bien déterminées de son information génétique? Il ne sera probablement pas possible de donner une explication cohérente du développement embryonnaire, de la différentiation cellulaire et du maintien de ľétat différencie tant que nous n'aurons pas repondu de manière satis-faisante à cette question. Dans un premier chapitre, quelques notions de base concernant ľexpression génétique sont préséntées. Le dogme de flux de ľinformation génétique dans la cellule, DNARNA protéine est valable à la fois pour les procaryotes et les eucaryotes malgré des différences significatives au niveau de la structure et de la régulation des gènes. Contrairement aux génes procaryotes, la plu-part des gènes eucaryotes sont morcelés. Le DNA codant pour une protéine est interrompu par des régions non-codantes dont les transcrits sont éliminés par excision pendant la maturation du RNA messager ultérieurement traduit en protéine. Une grande variété de mécanismes interviennent dans la régulation de ľactivité de ces gènes. Le pouvoir et les limites des méthodes modernes de ľanalyse structurale et fonctionnelle des génes sont discutés dans la deuxième partie de ľarticle. Ľhybridation moléculaire reposant sur la complémentarité des bases azotées des acides nucléiques joue un rôle déterminant dans ľétude de la complexity des génomes et de leur expression. Récemment, ľapplication de la technologie du DNA recombinant et des techniques annexes a permis ľisolement ainsi que la caractérisation de plusieurs génes eucaryotes. La question de ľexpression différentielle de ces génes est actuellement intensément étudiée dans plusieurs systèmes de transcription ayant chacun ses points forts et ses faiblesses. En guise de conclusion, quelques implications de ľessor prodigieux que connaît la génétique moléculaire sont discutées.
Resumo:
The genetic characterization of unbalanced mixed stains remains an important area where improvement is imperative. In fact, using the standard tools of forensic DNA profiling (i.e., STR markers), the profile of the minor contributor in mixed DNA stains cannot be successfully detected if its quantitative share of DNA is less than 10% of the mixed trace. This is due to the fact that the major contributor's profile "masks" that of the minor contributor. Besides known remedies to this problem, such as Y-STR analysis, a new compound genetic marker that consists of a Deletion/Insertion Polymorphism (DIP) linked to a Short Tandem Repeat (STR) polymorphism, has recently been developed and proposed [1]. These novel markers are called DIP-STR markers. This paper compares, from a statistical and forensic perspective, the potential usefulness of these novel DIP-STR markers (i) with traditional STR markers in cases of moderately unbalanced mixtures, and (ii) with Y-STR markers in cases of female-male mixtures. This is done through a comparison of the distribution of 100,000 likelihood ratio values obtained using each method on simulated mixtures. This procedure is performed assuming, in turn, the prosecution's and the defence's point of view.
Resumo:
The aim of this study was to describe the clinical and PSG characteristics of narcolepsy with cataplexy and their genetic predisposition by using the retrospective patient database of the European Narcolepsy Network (EU-NN). We have analysed retrospective data of 1099 patients with narcolepsy diagnosed according to International Classification of Sleep Disorders-2. Demographic and clinical characteristics, polysomnography and multiple sleep latency test data, hypocretin-1 levels, and genome-wide genotypes were available. We found a significantly lower age at sleepiness onset (men versus women: 23.74 ± 12.43 versus 21.49 ± 11.83, P = 0.003) and longer diagnostic delay in women (men versus women: 13.82 ± 13.79 versus 15.62 ± 14.94, P = 0.044). The mean diagnostic delay was 14.63 ± 14.31 years, and longer delay was associated with higher body mass index. The best predictors of short diagnostic delay were young age at diagnosis, cataplexy as the first symptom and higher frequency of cataplexy attacks. The mean multiple sleep latency negatively correlated with Epworth Sleepiness Scale (ESS) and with the number of sleep-onset rapid eye movement periods (SOREMPs), but none of the polysomnographic variables was associated with subjective or objective measures of sleepiness. Variant rs2859998 in UBXN2B gene showed a strong association (P = 1.28E-07) with the age at onset of excessive daytime sleepiness, and rs12425451 near the transcription factor TEAD4 (P = 1.97E-07) with the age at onset of cataplexy. Altogether, our results indicate that the diagnostic delay remains extremely long, age and gender substantially affect symptoms, and that a genetic predisposition affects the age at onset of symptoms.
Resumo:
BACKGROUND: Maintaining therapeutic concentrations of drugs with a narrow therapeutic window is a complex task. Several computer systems have been designed to help doctors determine optimum drug dosage. Significant improvements in health care could be achieved if computer advice improved health outcomes and could be implemented in routine practice in a cost effective fashion. This is an updated version of an earlier Cochrane systematic review, by Walton et al, published in 2001. OBJECTIVES: To assess whether computerised advice on drug dosage has beneficial effects on the process or outcome of health care. SEARCH STRATEGY: We searched the Cochrane Effective Practice and Organisation of Care Group specialized register (June 1996 to December 2006), MEDLINE (1966 to December 2006), EMBASE (1980 to December 2006), hand searched the journal Therapeutic Drug Monitoring (1979 to March 2007) and the Journal of the American Medical Informatics Association (1996 to March 2007) as well as reference lists from primary articles. SELECTION CRITERIA: Randomized controlled trials, controlled trials, controlled before and after studies and interrupted time series analyses of computerized advice on drug dosage were included. The participants were health professionals responsible for patient care. The outcomes were: any objectively measured change in the behaviour of the health care provider (such as changes in the dose of drug used); any change in the health of patients resulting from computerized advice (such as adverse reactions to drugs). DATA COLLECTION AND ANALYSIS: Two reviewers independently extracted data and assessed study quality. MAIN RESULTS: Twenty-six comparisons (23 articles) were included (as compared to fifteen comparisons in the original review) including a wide range of drugs in inpatient and outpatient settings. Interventions usually targeted doctors although some studies attempted to influence prescriptions by pharmacists and nurses. Although all studies used reliable outcome measures, their quality was generally low. Computerized advice for drug dosage gave significant benefits by:1.increasing the initial dose (standardised mean difference 1.12, 95% CI 0.33 to 1.92)2.increasing serum concentrations (standradised mean difference 1.12, 95% CI 0.43 to 1.82)3.reducing the time to therapeutic stabilisation (standardised mean difference -0.55, 95%CI -1.03 to -0.08)4.reducing the risk of toxic drug level (rate ratio 0.45, 95% CI 0.30 to 0.70)5.reducing the length of hospital stay (standardised mean difference -0.35, 95% CI -0.52 to -0.17). AUTHORS' CONCLUSIONS: This review suggests that computerized advice for drug dosage has some benefits: it increased the initial dose of drug, increased serum drug concentrations and led to a more rapid therapeutic control. It also reduced the risk of toxic drug levels and the length of time spent in the hospital. However, it had no effect on adverse reactions. In addition, there was no evidence to suggest that some decision support technical features (such as its integration into a computer physician order entry system) or aspects of organization of care (such as the setting) could optimise the effect of computerised advice.