67 resultados para Análisis cluster
Resumo:
In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.
Resumo:
BACKGROUND: In 2011, a patient was admitted to our hospital with acute schistosomiasis after having returned from Madagascar and having bathed at the Lily waterfalls. On the basis of this patient's indication, infection was suspected in 41 other subjects. This study investigated (1) the knowledge of the travelers about the risks of schistosomiasis and their related behavior to evaluate the appropriateness of prevention messages and (2) the diagnostic workup of symptomatic travelers by general practitioners to evaluate medical care of travelers with a history of freshwater exposure in tropical areas. METHODS: A questionnaire was sent to the 42 travelers with potential exposure to schistosomiasis. It focused on pre-travel knowledge of the disease, bathing conditions, clinical presentation, first suspected diagnosis, and treatment. RESULTS: Of the 42 questionnaires, 40 (95%) were returned, among which 37 travelers (92%) reported an exposure to freshwater, and 18 (45%) were aware of the risk of schistosomiasis. Among these latter subjects, 16 (89%) still reported an exposure to freshwater. Serology was positive in 28 (78%) of 36 exposed subjects at least 3 months after exposure. Of the 28 infected travelers, 23 (82%) exhibited symptoms and 16 (70%) consulted their general practitioner before the information about the outbreak had spread, but none of these patients had a serology for schistosomiasis done during the first consultation. CONCLUSIONS: The usual prevention message of avoiding freshwater contact when traveling in tropical regions had no impact on the behavior of these travelers, who still went swimming at the Lily waterfalls. This prevention message should, therefore, be either modified or abandoned. The clinical presentation of acute schistosomiasis is often misleading. General practitioners should at least request an eosinophil count, when confronted with a returning traveler with fever. If eosinophilia is detected, it should prompt the search for a parasitic disease.
Resumo:
Segment poses and joint kinematics estimated from skin markers are highly affected by soft tissue artifact (STA) and its rigid motion component (STARM). While four marker-clusters could decrease the STA non-rigid motion during gait activity, other data, such as marker location or STARM patterns, would be crucial to compensate for STA in clinical gait analysis. The present study proposed 1) to devise a comprehensive average map illustrating the spatial distribution of STA for the lower limb during treadmill gait and 2) to analyze STARM from four marker-clusters assigned to areas extracted from spatial distribution. All experiments were realized using a stereophotogrammetric system to track the skin markers and a bi-plane fluoroscopic system to track the knee prosthesis. Computation of the spatial distribution of STA was realized on 19 subjects using 80 markers apposed on the lower limb. Three different areas were extracted from the distribution map of the thigh. The marker displacement reached a maximum of 24.9mm and 15.3mm in the proximal areas of thigh and shank, respectively. STARM was larger on thigh than the shank with RMS error in cluster orientations between 1.2° and 8.1°. The translation RMS errors were also large (3.0mm to 16.2mm). No marker-cluster correctly compensated for STARM. However, the coefficient of multiple correlations exhibited excellent scores between skin and bone kinematics, as well as for STARM between subjects. These correlations highlight dependencies between STARM and the kinematic components. This study provides new insights for modeling STARM for gait activity.
Resumo:
OBJECTIVE: To evaluate the effectiveness of a complex intervention implementing best practice guidelines recommending clinicians screen and counsel young people across multiple psychosocial risk factors, on clinicians' detection of health risks and patients' risk taking behaviour, compared to a didactic seminar on young people's health. DESIGN: Pragmatic cluster randomised trial where volunteer general practices were stratified by postcode advantage or disadvantage score and billing type (private, free national health, community health centre), then randomised into either intervention or comparison arms using a computer generated random sequence. Three months post-intervention, patients were recruited from all practices post-consultation for a Computer Assisted Telephone Interview and followed up three and 12 months later. Researchers recruiting, consenting and interviewing patients and patients themselves were masked to allocation status; clinicians were not. SETTING: General practices in metropolitan and rural Victoria, Australia. PARTICIPANTS: General practices with at least one interested clinician (general practitioner or nurse) and their 14-24 year old patients. INTERVENTION: This complex intervention was designed using evidence based practice in learning and change in clinician behaviour and general practice systems, and included best practice approaches to motivating change in adolescent risk taking behaviours. The intervention involved training clinicians (nine hours) in health risk screening, use of a screening tool and motivational interviewing; training all practice staff (receptionists and clinicians) in engaging youth; provision of feedback to clinicians of patients' risk data; and two practice visits to support new screening and referral resources. Comparison clinicians received one didactic educational seminar (three hours) on engaging youth and health risk screening. OUTCOME MEASURES: Primary outcomes were patient report of (1) clinician detection of at least one of six health risk behaviours (tobacco, alcohol and illicit drug use, risks for sexually transmitted infection, STI, unplanned pregnancy, and road risks); and (2) change in one or more of the six health risk behaviours, at three months or at 12 months. Secondary outcomes were likelihood of future visits, trust in the clinician after exit interview, clinician detection of emotional distress and fear and abuse in relationships, and emotional distress at three and 12 months. Patient acceptability of the screening tool was also described for the intervention arm. Analyses were adjusted for practice location and billing type, patients' sex, age, and recruitment method, and past health risks, where appropriate. An intention to treat analysis approach was used, which included multilevel multiple imputation for missing outcome data. RESULTS: 42 practices were randomly allocated to intervention or comparison arms. Two intervention practices withdrew post allocation, prior to training, leaving 19 intervention (53 clinicians, 377 patients) and 21 comparison (79 clinicians, 524 patients) practices. 69% of patients in both intervention (260) and comparison (360) arms completed the 12 month follow-up. Intervention clinicians discussed more health risks per patient (59.7%) than comparison clinicians (52.7%) and thus were more likely to detect a higher proportion of young people with at least one of the six health risk behaviours (38.4% vs 26.7%, risk difference [RD] 11.6%, Confidence Interval [CI] 2.93% to 20.3%; adjusted odds ratio [OR] 1.7, CI 1.1 to 2.5). Patients reported less illicit drug use (RD -6.0, CI -11 to -1.2; OR 0·52, CI 0·28 to 0·96), and less risk for STI (RD -5.4, CI -11 to 0.2; OR 0·66, CI 0·46 to 0·96) at three months in the intervention relative to the comparison arm, and for unplanned pregnancy at 12 months (RD -4.4; CI -8.7 to -0.1; OR 0·40, CI 0·20 to 0·80). No differences were detected between arms on other health risks. There were no differences on secondary outcomes, apart from a greater detection of abuse (OR 13.8, CI 1.71 to 111). There were no reports of harmful events and intervention arm youth had high acceptance of the screening tool. CONCLUSIONS: A complex intervention, compared to a simple educational seminar for practices, improved detection of health risk behaviours in young people. Impact on health outcomes was inconclusive. Technology enabling more efficient, systematic health-risk screening may allow providers to target counselling toward higher risk individuals. Further trials require more power to confirm health benefits. TRIAL REGISTRATION: ISRCTN.com ISRCTN16059206.