90 resultados para Airborne Enginereed Nanoparticles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: Induction of oxidative stress and impairment of the antioxidant defense are considered important biological responses following nanoparticle (NP) exposure. The acellular in vitro dithiothreitol (DTT) assay is proposed to measure the oxidative potential of NP. In addition, DTT can be considered as a model compound of sulfur containing antioxidants. The objective of this work is to evaluate the surface reactivity in solution of a NP panel toward DTT. METHOD: The NP panel was composed of four carbonaceous particles, six types of metal oxides and silver with primary size ranged from 7 to 300 nm. Suspensions were prepared in surfactant solution with 30 min sonication. DTT was used as reductant to evaluate the oxidative properties of the different NP. The determination of the NP ability to catalyze electron transfer from DTT to oxygen was carried out as described in Sauvain et al., Nanotoxicology, 2008, 2:3, 121−129. RESULTS: All the carbonaceous NP catalyzed the oxidation of DTT by oxygen following the mass based order: carbon black > diesel exhaust particle > nanotubes > fullerene. A contrasting reactivity was observed for the metallic NP. Except for nickel oxide and metallic silver, which reacted similarly to the carbonaceous NP, all other metal oxides hindered the oxidation of DTT by oxygen, with ZnO being the most effective one. CONCLUSIONS : DTT was stabilized against oxidation in the presence of metal oxide NP in the solution. This suggests that different chemical interactions take place compared with carbonaceous NP. To explain these differences, we hypothesize that DTT could form complexes with the metal oxide surface (or dissolved metal ions), rendering it less susceptible to oxidation. By analogy, such a process could be thought to apply in biological systems with sulfur−containing antioxidants, reducing their buffer capacity. Such NP could thus contribute to oxidative stress by an alternative mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have demonstrated that poultry house workers are exposed to very high levels of organic dust and consequently have an increased prevalence of adverse respiratory symptoms. However, the influence of the age of broilers on bioaerosol concentrations has not been investigated. To evaluate the evolution of bioaerosol concentration during the fattening period, bioaerosol parameters (inhalable dust, endotoxin and bacteria) were measured in 12 poultry confinement buildings in Switzerland, at three different stages of the birds' growth; samples of air taken from within the breathing zones of individual poultry house employees as they caught the chickens ready to be transported for slaughter were also analysed. Quantitative polymerase chain reaction (Q-PCR) was used to assess the quantity of total airborne bacteria and total airborne Staphylococcus species. Bioaerosol levels increased significantly during the fattening period of the chickens. During the task of catching mature birds, the mean inhalable dust concentration for a worker was 26 +/- 1.9 mg m(-3) and endotoxin concentration was 6198 +/- 2.3 EU m(-3) air, >6-fold higher than the Swiss occupational recommended value (1000 EU m(-3)). The mean exposure level of bird catchers to total bacteria and Staphylococcus species measured by Q-PCR is also very high, respectively, reaching values of 53 (+/-2.6) x 10(7) cells m(-3) air and 62 (+/-1.9) x 10(6) m(-3) air. It was concluded that in the absence of wearing protective breathing apparatus, chicken catchers in Switzerland risk exposure beyond recommended limits for all measured bioaerosol parameters. Moreover, the use of Q-PCR to estimate total and specific numbers of airborne bacteria is a promising tool for evaluating any modifications intended to improve the safety of current working practices

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The benefit of polymeric immuno-nanoparticles (NPs-Tx-HER), consisting of paclitaxel (Tx)-loaded nanoparticles coated with anti-HER2 monoclonal antibodies (Herceptin, trastuzumab), in cancer treatment was assessed in a disseminated xenograft ovarian cancer model induced by intraperitoneal inoculation of SKOV-3 cells overexpressing HER2 antigens. The study was focused on the evaluation of therapeutic efficacy and biodistribution of NPs-Tx-HER compared to other Tx formulations. The therapeutic efficacy was determined by two methods: bioluminescence imaging and survival rate. The treatment regimen consisted in an initial dose of 20mg/kg Tx administered as 10mg/kg intravenously (IV) and 10mg/kg intraperitonealy (IP), followed by five alternative IP and IV injections of 10mg/kg Tx every 3 days. The bioluminescence study has clearly shown the superior anti-tumor activity of NPs-Tx-HER compared to free Tx. As a confirmation of these results, a significantly longer survival of mice was observed for NPs-Tx-HER treatment compared to free Tx, Tx-loaded nanoparticles coated with an irrelevant mAb (Mabthera, rituximab) or Herceptin alone, indicating the potential of immuno-nanoparticles in cancer treatment. The biodistribution pattern of Tx was assessed on healthy and tumor bearing mice after IV or IP administration. An equivalent biodistribution profile was observed in healthy mice for Tx encapsulated either in uncoated nanoparticles (NPs-Tx) or in NPs-Tx-HER. No significant difference in Tx biodistribution was observed after IV or IP injection, except for a lower accumulation in the lungs when NPs were administered by IP. Encapsulated Tx accumulated in the organs of the reticulo-endothelial system (RES) such as the liver and spleen, whereas free Tx had a non-specific distribution in all tested organs. Compared to free Tx, the single dose injection (IV or IP) of encapsulated Tx in mice bearing tumors induced a higher tumor accumulation. However, no difference in overall tumor accumulation between NPs-Tx-HER and NPs-Tx was observed. In conclusion, the encapsulation of Tx into NPs-Tx-HER immuno-nanoparticles resulted in an improved efficacy of drug in the treatment of disseminated ovarian cancer overexpressing HER2 receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomaterials with structures in the nanoscale (1 to 100 nm) often have chemical, physical and bioactive characteristics different from those of larger entities of the same material. This is interesting for industry but raises questions about the health of exposed people. However, little is known so far about the exposure of workers to inhalable airborne nanomaterials. We investigated several activities in research laboratories and industry to learn about relevant exposure scenarios. Work process analyses were combined with measurements of airborne particle mass concentrations and number−size distributions. Background levels in research settings were mostly low, while in industrial production, levels were sometimes elevated, especially in halls near busy roads or in the presence of diesel fork lifts without particle filters. Peak levels were found in an industrial setting dealing with powders (up to 80,000 particles/cm³ and up to 15 mg/m³). Mostly low concentrations were found for activities involving liquid applications. However, centrifugation and lyophilization of nanoparticle containing solutions resulted in very high particle number concentrations (up to 300,000 particles/cm³), whereas no increases were seen for the same activities conducted with nanoparticle−free liquids. No significant increases of particle concentrations were found for processes involving nanoparticles bound to surfaces. Also no increases were observed in laboratories that were visualizing properties and structures of small amounts of nanomaterials. Conclusion: When studying exposure scenarios for airborne nanomaterials, the focus should not only be on processes involving nano−powders, but also on processes involving intensively treated nanoparticle−containing liquids. Acknowledgement: We thank Chantal Imhof, MSc and Guillaume Ferraris, MSc for their contributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanoparticles developed are based on chitosan, a biocompatible and biodegradable polysaccharide. The chitosan nanoparticles are formed in an entirely water-based process by electrostatic interactions with other biocompatible molecules. As a prerequisite to understand the fate of such nanoparticles in cells, comprehensive characterization and stability studies serve to identify quantitatively the impact of the raw material characteristics and preparation conditions on the nanoparticle characteristics. Methods included H-1 NMR spectroscopy, dilution viscometry, particle size analysis and electron microscopy. Cytotoxicity and cell uptake experiments on RAW 264.7 murine macrophages and p23 murine endothelial cells were performed to investigate the correlation with nanoparticle characteristics and effect of surface decoration with alginate. Cytotoxicity was assessed by the MTT survival test; cell uptake was monitored by fluorescent microscopy using labeled polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the oxidative reactivity of nanoparticles (NPs; <100 nm) could substantially contribute to explaining their toxicity. We attempted to refine the use of 2′7-dichlorodihydrofluorescein (DCFH) to characterize NP generation of reactive oxygen species (ROS). Several fluorescent probes have been applied to testing oxidative reactivity, but despite DCFH being one of the most popular for the detection of ROS, when it has been applied to NPs there have been an unexplainably wide variability in results. Without a uniform methodology, validating even robust results is impossible. This study, therefore, identified sources of conflicting results and investigated ways of reducing occurrence of artificial results. Existing techniques were tested and combined (using their most desirable features) to form a more reliable method for the measurement of NP reactivity in aqueous dispersions. We also investigated suitable sample ranges necessary to determine generation of ROS. Specifically, ultrafiltration and time-resolved scan absorbance spectra were used to study possible optical interference when using high sample concentrations. Robust results were achieved at a 5 µM DCFH working solution with 0.5 unit/mL horseradish peroxidase (HRP) dissolved in ethanol. Sonication in DCFH-HRP working solution provided more stable data with a relatively clean background. Optimal particle concentration depends on the type of NP and in general was in the µg/mL range. Major reasons for previously reported conflicting results due to interference were different experimental approaches and NP sample concentrations. The protocol presented here could form the basis of a standardized method for applying DCFH to detect generation of ROS by NPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This publication presents one of the first uses of silicon oxide nanoparticles to detect fingermarks. The study is not confined to showing successful detection of fingermarks, but is focused on understanding the mechanisms involved in the fingermark detection process. To gain such an understanding, various chemical groups are grafted onto the nanoparticle surface, and parameters such as the pH of the solutions or zeta potential are varied to study their influence on the detection. An electrostatic interaction has been the generally accepted hypothesis of interaction between nanoparticles and fingermarks, but the results of this research challenge that hypothesis, showing that the interaction is chemically driven. Carboxyl groups grafted onto the nanoparticle surfaces react with amine groups of the fingermark secretion. This formation of amide linkage between carboxyl and amine groups has further been favoured by catalyzing the reaction with a compound of diimide type. The research strategy adopted here ought to be applicable to all detection techniques using nanoparticles. For most of them the nature of the interaction remains poorly understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug-nanoparticle conjugates: The anticancer drug camptothecin (CPT) was covalently linked at the surface of ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) via a linker, allowing drug release by cellular esterases. Nanoparticles were hierarchically built to achieve magnetically-enhanced drug delivery to human cancer cells and antiproliferative activity.The linking of therapeutic drugs to ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) allowing intracellular release of the active drug via cell-specific mechanisms would achieve tumor-selective magnetically-enhanced drug delivery. To validate this concept, we covalently attached the anticancer drug camptothecin (CPT) to biocompatible USPIOs (iron oxide core, 9-10 nm; hydrodynamic diameter, 52 nm) coated with polyvinylalcohol/polyvinylamine (PVA/aminoPVA). A bifunctional, end-differentiated dicarboxylic acid linker allowed the attachment of CPT to the aminoPVA as a biologically labile ester substrate for cellular esterases at one end, and as an amide at the other end. These CPT-USPIO conjugates exhibited antiproliferative activity in vitro against human melanoma cells. The intracellular localization of CPT-USPIOs was confirmed by transmission electron microscopy (iron oxide core), suggesting localization in lipid vesicles, and by fluorescence microscopy (CPT). An external static magnetic field applied during exposure increased melanoma cell uptake of the CPT-USPIOs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing body of epidemiologic evidence suggests an association between exposure to cleaning products and respiratory dysfunction. Due to the lack of quantitative assessments of respiratory exposures to airborne irritants and sensitizers among professional cleaners, the culpable substances have yet to be identified.Purpose: Focusing on previously identified irritants, our aims were to determine (i) airborne concentrations of monoethanolamine (MEA), glycol ethers, and benzyl alcohol (BA) during different cleaning tasks performed by professional cleaning workers and assess their determinants; and (ii) air concentrations of formaldehyde, a known indoor air contaminant. METHODS: Personal air samples were collected in 12 cleaning companies, and analyzed by conventional methods. RESULTS: Nearly all air concentrations [MEA (n = 68), glycol ethers (n = 79), BA (n = 15), and formaldehyde (n = 45)] were far below (<1/10) of the corresponding Swiss occupational exposure limits (OEL), except for ethylene glycol mono-n-butyl ether (EGBE). For butoxypropanol and BA, no OELs exist. Although only detected once, EGBE air concentrations (n = 4) were high (49.48-58.72mg m(-3)), and close to the Swiss OEL (49mg m(-3)). When substances were not noted as present in safety data sheets of cleaning products used but were measured, air concentrations showed no presence of MEA, while the glycol ethers were often present, and formaldehyde was universally detected. Exposure to MEA was affected by its amount used (P = 0.036), and spraying (P = 0.000) and exposure to butoxypropanol was affected by spraying (P = 0.007) and cross-ventilation (P = 0.000). CONCLUSIONS: Professional cleaners were found to be exposed to multiple airborne irritants at low concentrations, thus these substances should be considered in investigations of respiratory dysfunctions in the cleaning industry; especially in specialized cleaning tasks such as intensive floor cleaning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Health assessment and medical surveillance of workers exposed to combustion nanoparticles are challenging. The aim was to evaluate the feasibility of using exhaled breath condensate (EBC) from healthy volunteers for (1) assessing the lung deposited dose of combustion nanoparticles and (2) determining the resulting oxidative stress by measuring hydrogen peroxide (H2O2) and malondialdehyde (MDA). Methods: Fifteen healthy nonsmoker volunteers were exposed to three different levels of sidestream cigarette smoke under controlled conditions. EBC was repeatedly collected before, during, and 1 and 2 hr after exposure. Exposure variables were measured by direct reading instruments and by active sampling. The different EBC samples were analyzed for particle number concentration (light-scattering-based method) and for selected compounds considered oxidative stress markers. Results: Subjects were exposed to an average airborne concentration up to 4.3×10(5) particles/cm(3) (average geometric size ∼60-80 nm). Up to 10×10(8) particles/mL could be measured in the collected EBC with a broad size distribution (50(th) percentile ∼160 nm), but these biological concentrations were not related to the exposure level of cigarette smoke particles. Although H2O2 and MDA concentrations in EBC increased during exposure, only H2O2 showed a transient normalization 1 hr after exposure and increased afterward. In contrast, MDA levels stayed elevated during the 2 hr post exposure. Conclusions: The use of diffusion light scattering for particle counting proved to be sufficiently sensitive to detect objects in EBC, but lacked the specificity for carbonaceous tobacco smoke particles. Our results suggest two phases of oxidation markers in EBC: first, the initial deposition of particles and gases in the lung lining liquid, and later the start of oxidative stress with associated cell membrane damage. Future studies should extend the follow-up time and should remove gases or particles from the air to allow differentiation between the different sources of H2O2 and MDA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Therapeutic engineered nanoparticles (NPs), including ultrasmall superparamagnetic iron oxide (USPIO) NPs, may accumulate in the lower digestive tract following ingestion or injection. In order to evaluate the reaction of human colon cells to USPIO NPs, the effects of non-stabilized USPIO NPs (NS-USPIO NPs), oleic-acid-stabilized USPIO NPs (OA-USPIO NPs), and free oleic acid (OA) were compared in human HT29 and CaCo2 colon epithelial cancer cells. First the biophysical characteristics of NS-USPIO NPs and OA-USPIO NPs in water, in cell culture medium supplemented with fetal calf serum, and in cell culture medium preconditioned by HT29 and CaCo₂ cells were determined. Then, stress responses of the cells were evaluated following exposure to NS-USPIO NPs, OA-USPIO NPs, and free OA. No modification of the cytoskeletal actin network was observed. Cell response to stress, including markers of apoptosis and DNA repair, oxidative stress and degradative/autophagic stress, induction of heat shock protein, or lipid metabolism was determined in cells exposed to the two NPs. Induction of an autophagic response was observed in the two cell lines for both NPs but not free OA, while the other stress responses were cell- and NP-specific. The formation of lipid vacuoles/droplets was demonstrated in HT29 and CaCo₂ cells exposed to OA-USPIO NPs but not to NS-USPIO NPs, and to a much lower level in cells exposed to equimolar concentrations of free OA. Therefore, the induction of lipid vacuoles in colon cells exposed to OA utilized as a stabilizer for USPIO NPs is higly amplified compared to free OA, and is not observed in the absence of this lipid in NS-USPIO NPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have demonstrated that poultry-house workers are exposed to very high levels of organic dust and consequently have an increased prevalence of adverse respiratory symptoms. However, the influence of the age of broilers, on bioaerosol concentrations has not been investigated. To evaluate the evolution of bioaerosol concentration during the fattening period, bioaerosol parameters (inhalable dust, endotoxin and bacteria) were measured in 12 poultry confinement buildings in Switzerland, at 3 different stages of the birds' growth; Samples of air taken from within the breathing zones of individual poultry-house employees as they caught the chickens ready to be transported for slaughter, were also analysed. Quantitative PCR (Q-PCR) was used to assess the quantity of total airborne bacteria and total airborne Staphylococcus species. Bioaerosol levels increased significantly during the fattening period of the chickens. During the task of catching mature birds, the mean inhalable dust concentration for a worker was 31 ± 4.7 mg/m3, and endotoxin concentration was 11'080 ± 3436 UE/m3 air, more than ten-fold higher than the Swiss occupational recommended value (1000 UE/m3). The mean exposure level of bird catchers to total bacteria and Staphylococcus species measured by Q-PCR is also very high, respectively reaching values of 72 (± 11) x107 cells/m3 air and 70 (± 16) x106/m3 air. It was concluded that in the absence of wearing protective breathing apparatus, chicken catchers in Switzerland risk exposure beyond recommended limits for all measured bioaerosol parameters. Moreover, the use of Q-PCR to estimate total and specific numbers of airborne bacteria is a promising tool for evaluating any modifications intended to improve the safety of current working practices.