131 resultados para Adverse environmental conditions
Resumo:
1. Harsh environmental conditions experienced during development can reduce the performance of the same individuals in adulthood. However, the 'predictive adaptive response' hypothesis postulates that if individuals adapt their phenotype during development to the environments where they are likely to live in the future, individuals exposed to harsh conditions in early life perform better when encountering the same harsh conditions in adulthood compared to those never exposed to these conditions before. 2. Using the common vole (Microtus arvalis) as study organism, we tested how exposure to flea parasitism during the juvenile stage affects the physiology (haematocrit, resistance to oxidative stress, resting metabolism, spleen mass, and testosterone), morphology (body mass, testis mass) and motor performance (open field activity and swimming speed) of the same individuals when infested with fleas in adulthood. According to the 'predictive adaptive response' hypothesis, we predicted that voles parasitized at the adult stage would perform better if they had already been parasitized with fleas at the juvenile stage. 3. We found that voles exposed to fleas in adulthood had a higher metabolic rate if already exposed to fleas when juvenile, compared to voles free of fleas when juvenile and voles free of fleas in adulthood. Independently of juvenile parasitism, adult parasitism impaired adult haematocrit and motor performances. Independently of adult parasitism, juvenile parasitism slowed down crawling speed in adult female voles. 4. Our results suggest that juvenile parasitism has long-term effects that do not protect from the detrimental effects of adult parasitism. On the contrary, experiencing parasitism in early-life incurs additional costs upon adult parasitism measured in terms of higher energy expenditure, rather than inducing an adaptive shift in the developmental trajectory. 5. Hence, our study provides experimental evidence for long term costs of parasitism. We found no support for a predictive adaptive response in this host-parasite system.
Resumo:
Aim Specialized mutualistic clades may revert and thus increase their autonomy and generalist characteristics. However, our understanding of the drivers that trigger reductions in mutualistic traits and of the consequences for the tolerance of these species to various environmental conditions remains limited. This study investigates the relationship between the environmental niche and the degree of myrmecophily (i.e. the ability to interact with ants) among members of the Lycaenidae. Location The western Swiss Alps. Methods We measured the tolerance of Lycaenidae species to low temperatures by comparing observations from a random stratified field sampling with climatic maps. We then compared the species-specific degree of myrmecophily with the species range limits at colder temperatures while controlling for phylogenetic dependence. We further evaluated whether the community-averaged degree of myrmecophily increases with temperature, as would be expected in the case of environmental filters acting on myrmecophilous species. Results Twenty-nine Lycaenidae species were found during sampling. Ancestral state reconstruction indicated that the 24 species of Polyommatinae displayed both strong myrmecophily and secondary loss of mutualism; these species were used in the subsequent statistical analyses. Species with a higher degree of ant interaction were, on average, more likely to inhabit warmer sites. Species inhabiting the coldest environments displayed little or no interaction with ants. Main conclusions Colder climates at high elevations filter out species with a high degree of myrmecophily and may have been the direct evolutionary force that promoted the loss of mutualism. A larger taxon sampling across the Holarctic may help to distinguish between the ecological and evolutionary effects of climate.
Resumo:
BIOMOD is a computer platform for ensemble forecasting of species distributions, enabling the treatment of a range of methodological uncertainties in models and the examination of species-environment relationships. BIOMOD includes the ability to model species distributions with several techniques, test models with a wide range of approaches, project species distributions into different environmental conditions (e.g. climate or land use change scenarios) and dispersal functions. It allows assessing species temporal turnover, plot species response curves, and test the strength of species interactions with predictor variables. BIOMOD is implemented in R and is a freeware, open source, package
Resumo:
Staphylococcus aureus is a highly successful pathogen responsible of a wide variety of diseases, from minor skin infection to life-threatening sepsis or infective endocarditis, as well as food poisoning and toxic shock syndrome. This heterogeneity of infections and the ability of S. aureus to develop antibiotic-resistance to virtually any available drugs reflect its extraordinary capacity to adapt and survive in a great variety of environments. The pathogenesis of S. aureus infection involves a wide range of cell wall-associated adhesins and extracellular toxins that promote host colonization and invasion. In addition, S. aureus is extremely well equipped with regulatory systems that sense environmental conditions and respond by fine tuning the expression of metabolic and virulence determinants. Surface adhesins referred to MSCRAMMs - for Microbial Surface Component Recognizing Adherence Matrix Molecules - mediate binding to the host extracellular matrix or serum components, including fibrinogen, fibronectin, collagen and elastin, and promote tissue colonization and invasion. Major MSCRAMMs include a family of surface-attached proteins covalently bound to the cell wall peptidoglycan via a conserved LPXTG motif. Genomic analyses indicate that S. aureus contain up to 22 LPXTG surface proteins, which could potentially act individually or in synergy to promote infection. In the first part of this study we determined the range of adherence phenotypes to fibrinogen and fibronectin among 30 carriage isolates of S. aureus and compared it to the adherence phenotypes of 30 infective endocarditis and 30 blood culture isolates. Overall there were great variations in in vitro adherence, but no differences were observed between carriage and infection strains. We further determined the relation between in vitro adherence and in vivo infectivity in a rat model of experimental endocarditis, using 4 isolates that displayed either extremely low or high adherence phenotypes. Unexpectedly, no differences were observed between the in vivo infectivity of isolates that were poorly and highly adherent in vitro. We concluded that the natural variability of in vitro adherence to fibrinogen and fibronectin did not correlate with in vivo infectivity, and thus that pathogenic differences between various strains might only be expressed in in vivo conditions, but not in vitro. Therefore, considering the importance of adhesins expression for infection, direct measurement of those adhesins present on the bacterial surface were made by proteomic approach. 5 In the second series of experiments we assessed the physical presence of the LPXTG species at the staphylococcal surface, as measured at various time points during growth in different culture media. S. aureus Newman was grown in either tryptic soy broth (TSB) or in Roswell Park Memorial Institute (RPMI) culture medium, and samples were removed from early exponential growth phase to late stationary phase. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa) and clumping factor A (ClfA). Peptides of surface proteins were recovered by "trypsin-shaving" of live bacteria, and semi-quantitative proteomic analysis was performed by tandem liquid-chromatography and mass-spectrometry (LC-MS). We also determined in parallel the mRNA expression by microarrays analysis, as well as the phenotypic adherence of the bacteria to fibrinogen in vitro. The surface proteome was highly complex and contained numerous proteins theoretically not belonging to the bacterial envelope, including ribosomal proteins and metabolic enzymes. Sixteen of the 21 known LPXTG species were detected, but were differentially expressed. As expected, 9 known agr-regulated proteins (e.g. including Spa, FnBPA, ClfA, IsdA, IsdB, SasH, SasD, SasG and FmtB) increased up to the late exponential growth phase, and were abrogated in agr-negative mutants. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr negative mutant, while all other LPXTG proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in in vitro fibrinogen adherence tests during late growth (24h), whereas it remained poorly detected by proteomics. Differential expression was also detected in iron-rich TSB versus iron-poor RPMI. Proteins from the iron-regulated surface determinant (isd) system, including IsdA, IsdB and IsdH were barely expressed in iron-rich TSB, whereas they increased their expression by >10 time in iron-poor RPMI. We conclude that semi-quantitative proteomic analysis of specific protein species is feasible in S. aureus and that proteomic, transcriptomic and adherence phenotypes demonstrated differential profiles in S. aureus. Furthermore, peptide signatures released by trypsin shaving suggested differential protein domain exposures in various environments, which might be relevant for antiadhesins vaccines. A comprehensive understanding of the S. aureus physiology should integrate all these approaches.
Resumo:
PURPOSE: The objective was to explore whether a satellite-based navigation system, global positioning system used in differential mode (DGPS), could accurately assess the speed of running in humans. METHODS: A subject was equipped with a portable GPS receptor coupled to a receiver for differential corrections, while running outdoors on a straight asphalt road at 27 different speeds. Actual speed (reference method) was assessed by chronometry. RESULTS: The accuracy of speed prediction had a standard deviation (SD) of 0.08 km x h(-1) for walking, 0.11 km x h(-1) for running, yielding a coefficient of variation (SD/mean) of 1.38% and 0.82%, respectively. There was a highly significant linear relationship between actual and DGPS speed assessment (r2 = 0.999) with little bias in the prediction equation, because the slope of the regression line was close to unity (0.997). CONCLUSION: the DGPS technique appears to be a valid and inconspicuous tool for "on line" monitoring of the speed of displacement of individuals located on any field on earth, for prolonged periods of time and unlimited distance, but only in specific environmental conditions ("open sky"). Furthermore, the accuracy of speed assessment using the differential GPS mode was improved by a factor of 10 as compared to non-differential GPS.
Resumo:
PURPOSE: This study investigated the isolated and combined effects of heat [temperate (22 °C/30 % rH) vs. hot (35 °C/40 % rH)] and hypoxia [sea level (FiO2 0.21) vs. moderate altitude (FiO2 0.15)] on exercise capacity and neuromuscular fatigue characteristics. METHODS: Eleven physically active subjects cycled to exhaustion at constant workload (66 % of the power output associated with their maximal oxygen uptake in temperate conditions) in four different environmental conditions [temperate/sea level (control), hot/sea level (hot), temperate/moderate altitude (hypoxia) and hot/moderate altitude (hot + hypoxia)]. Torque and electromyography (EMG) responses following electrical stimulation of the tibial nerve (plantar-flexion; soleus) were recorded before and 5 min after exercise. RESULTS: Time to exhaustion was reduced (P < 0.05) in hot (-35 ± 15 %) or hypoxia (-36 ± 14 %) compared to control (61 ± 28 min), while hot + hypoxia (-51 ± 20 %) further compromised exercise capacity (P < 0.05). However, the effect of temperature or altitude on end-exercise core temperature (P = 0.089 and P = 0.070, respectively) and rating of perceived exertion (P > 0.05) did not reach significance. Maximal voluntary contraction torque, voluntary activation (twitch interpolation) and peak twitch torque decreased from pre- to post-exercise (-9 ± 1, -4 ± 1 and -6 ± 1 % all trials compounded, respectively; P < 0.05), with no effect of the temperature or altitude. M-wave amplitude and root mean square activity were reduced (P < 0.05) in hot compared to temperate conditions, while normalized maximal EMG activity did not change. Altitude had no effect on any measured parameters. CONCLUSION: Moderate hypoxia in combination with heat stress reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. Impaired oxygen delivery or increased cardiovascular strain, increasing relative exercise intensity, may have also contributed to earlier exercise cessation.
Resumo:
The 20 amino acid residue peptides derived from RecA loop L2 have been shown to be the pairing domain of RecA. The peptides bind to ss- and dsDNA, unstack ssDNA, and pair the ssDNA to its homologous target in a duplex DNA. As shown by circular dichroism, upon binding to DNA the disordered peptides adopt a beta-structure conformation. Here we show that the conformational change of the peptide from random coil to beta-structure is important in binding ss- and dsDNA. The beta-structure in the DNA pairing peptides can be induced by many environmental conditions such as high pH, high concentration, and non-micellar sodium dodecyl sulfate (6 mM). This behavior indicates an intrinsic property of these peptides to form a beta-structure. A beta-structure model for the loop L2 of RecA protein when bound to DNA is thus proposed. The fact that aromatic residues at the central position 203 strongly modulate the peptide binding to DNA and subsequent biochemical activities can be accounted for by the direct effect of the aromatic amino acids on the peptide conformational change. The DNA-pairing domain of RecA visualized by electron microscopy self-assembles into a filamentous structure like RecA. The relevance of such a peptide filamentous structure to the structure of RecA when bound to DNA is discussed.
Resumo:
The demand for accurate forecasting of the effects of global warming on biodiversity is growing, but current methods for forecasting have limitations. in this article, we compare and discuss the different uses of four forecasting methods: (1) models that consider species individually, (2) niche-theory models that group species by habitat (more specifically, by environmental conditions under which a species can persist or does persist), (3) general circulation models and coupled ocean-atmosphere-biosphere models, and (4) specics-area curve models that consider all species or large aggregates of species. After outlining the different uses and limitations of these methods, we make eight primary suggestions for improving forecasts. We find that greater use of the fossil record and of modern genetic studies would improve forecasting methods. We note a Quaternary conundrum: While current empirical and theoretical ecological results suggest that many species could be at risk from global warming, during the recent ice ages surprisingly few species became extinct. The potential resolution of this conundrum gives insights into the requirements for more accurate and reliable forecasting. Our eight suggestions also point to constructive synergies in the solution to the different problems.
Resumo:
Oxygen and carbon isotope compositions of well-preserved mammoth teeth from the Middle Wurmian (40-70 ka) peat layer of Niederweningen, the most important mammoth site in Switzerland, were analysed to reconstruct Late Pleistocene palaeoclimatic and palaeoenvironmental conditions. Drinking water (delta(18)O values of approximately -12.3 +/- 0.9 parts per thousand were calculated front oxygen isotope compositions of mammoth tooth enamel apatite using a species-specific calibration for modern elephants. These delta(18)O(H2O) values reflect the mean oxygen isotope composition of the palaeo-precipitation and are similar to those directly measured for fate Pleistocene groundwater from aquifers in northern Switzerland and southern Germany. Using a present-day delta(18)O(H2)o-precipitation-air temperature relation for Switzerland, a mean annual air temperature (MAT) of around 4.3 +/- 2.1 degrees C can be calculated for the Middle Wurmian at this site. This MAT is in good agreement with palaeotemperature estimates on the basis of Middle Wurmian groundwater recharge temperatures and beetle assemblages. Hence, the climatic conditions in this region were around 4 degrees C cooler during the Middle Wurmian interstadial phase, around 45-50ka BP, than they are today. During this period the mammoths from Niederweningen lived in an open tundra-like, C(3) plant-dominated environment as indicated by enamel (delta(13)C values of -11.5 +/- 0.3 parts per thousand and pollen and macroplant fossils found in the embedding peat. The low variability of enamel delta(13)C and delta(18)O values from different mammoth teeth reflects similar environmental conditions and supports a relatively small time frame for the fossil assemblage. (C) 2006 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
Accurate detection of subpopulation size determinations in bimodal populations remains problematic yet it represents a powerful way by which cellular heterogeneity under different environmental conditions can be compared. So far, most studies have relied on qualitative descriptions of population distribution patterns, on population-independent descriptors, or on arbitrary placement of thresholds distinguishing biological ON from OFF states. We found that all these methods fall short of accurately describing small population sizes in bimodal populations. Here we propose a simple, statistics-based method for the analysis of small subpopulation sizes for use in the free software environment R and test this method on real as well as simulated data. Four so-called population splitting methods were designed with different algorithms that can estimate subpopulation sizes from bimodal populations. All four methods proved more precise than previously used methods when analyzing subpopulation sizes of transfer competent cells arising in populations of the bacterium Pseudomonas knackmussii B13. The methods' resolving powers were further explored by bootstrapping and simulations. Two of the methods were not severely limited by the proportions of subpopulations they could estimate correctly, but the two others only allowed accurate subpopulation quantification when this amounted to less than 25% of the total population. In contrast, only one method was still sufficiently accurate with subpopulations smaller than 1% of the total population. This study proposes a number of rational approximations to quantifying small subpopulations and offers an easy-to-use protocol for their implementation in the open source statistical software environment R.
Resumo:
Animals and plants are associated with symbiotic microbes whose roles range from mutualism to commensalism to parasitism. These roles may not only be taxon-specific but also dependent on environmental conditions and host factors. To experimentally test these possibilities, we drew a random sample of adult whitefish from a natural population, bred them in vitro in a full-factorial design in order to separate additive genetic from maternal environmental effects on offspring, and tested the performance of the resulting embryos under different environmental conditions. Enhancing the growth of symbiotic microbes with supplemental nutrients released cryptic additive genetic variance for viability in the fish host. These effects vanished with the concurrent addition of the water mould Saprolegnia ferax. Our findings demonstrate that the heritability of host fitness is environment-specific and critically depends on the interaction between symbiotic microbes.
Resumo:
Abstract: Protective immune responses against pathogen invasion and transformed cells requires the coordinated action of distinct leukocyte subsets and soluble factors, overall termed immunological network. Among antigen-presenting cells (APC), a crucial role is played by dendritic cells (DC), which initiate, amplify and determine the outcome of the immune response. Micro-environmental conditions profoundly influence DC in such ways that the resulting immune response ranges from successful immune stimulation to abortive response or immune suppression. For instance, the presence in the milieu of anti-inflammatory cytokine interleukin-10 (IL-10) reverts most of the effects mediated on DC by even strong pro-inflammatory agents such as bacterial Lipopolysaccharide (LPS), in terms of differentiation, activation and functions. In an environment containing both LPS and IL-10, uncoupling of receptors for inflammatory chemokines already occurs after a few hours and in a reversible manner on DC, allowing scavenging of chemokines and, consequently, attenuation of the inflammatory process which could be deleterious to the organism. By studying the effects on DC of concomitant stimulation by LPS and IL-10 from the gene expression point of view, we were able to define four distinct transcriptional programs: A. the inhibition of inflammation and immunity, B. the regulation of tissue remodeling, C. the tuning of cytokine/growth factor receptors and G protein-coupled receptors, D. the stimulation of B cell function and lymphoid tissue neogenesis. Among the latter genes, we further demonstrated that IL-10 synergizes with Toll-like receptor ligands for the production of functionally active B cell attracting chemokine CXCL13. Our data provide evidence that the combined exposure of APC to LPS and IL-10, via the production of CXCL13, involves humoral immunity by attracting antibody-producing cells. It is well known that the persistent release of CXCL13 leads to the development of ectopic lymphoid tissue aggregates and production of high levels of antibodies, thus favoring the induction of auto-immunity. Our findings suggest that the IL-10 produced in chronic inflammatory conditions may promote lymphoid tissue neogenesis through increased release of CXCL13. IL-10 is an anti-inflammatory cytokine inhibiting cellular-mediated TH 1-polarized immune responses. In this study we demonstrate that IL- 10 strongly supports the development of humoral immunity. IL-10 and CXCL13 can thus be targets for specific therapies in auto-immune diseases.
Resumo:
Challenging environmental conditions, including heat and humidity, cold, and altitude, pose particular risks to the health of Olympic and other high-level athletes. As a further commitment to athlete safety, the International Olympic Committee (IOC) Medical Commission convened a panel of experts to review the scientific evidence base, reach consensus, and underscore practical safety guidelines and new research priorities regarding the unique environmental challenges Olympic and other international-level athletes face. For non-aquatic events, external thermal load is dependent on ambient temperature, humidity, wind speed and solar radiation, while clothing and protective gear can measurably increase thermal strain and prompt premature fatigue. In swimmers, body heat loss is the direct result of convection at a rate that is proportional to the effective water velocity around the swimmer and the temperature difference between the skin and the water. Other cold exposure and conditions, such as during Alpine skiing, biathlon and other sliding sports, facilitate body heat transfer to the environment, potentially leading to hypothermia and/or frostbite; although metabolic heat production during these activities usually increases well above the rate of body heat loss, and protective clothing and limited exposure time in certain events reduces these clinical risks as well. Most athletic events are held at altitudes that pose little to no health risks; and training exposures are typically brief and well-tolerated. While these and other environment-related threats to performance and safety can be lessened or averted by implementing a variety of individual and event preventative measures, more research and evidence-based guidelines and recommendations are needed. In the mean time, the IOC Medical Commission and International Sport Federations have implemented new guidelines and taken additional steps to mitigate risk even further.
Resumo:
Many traits and/or strategies expressed by organisms are quantitative phenotypes. Because populations are of finite size and genomes are subject to mutations, these continuously varying phenotypes are under the joint pressure of mutation, natural selection and random genetic drift. This article derives the stationary distribution for such a phenotype under a mutation-selection-drift balance in a class-structured population allowing for demographically varying class sizes and/or changing environmental conditions. The salient feature of the stationary distribution is that it can be entirely characterized in terms of the average size of the gene pool and Hamilton's inclusive fitness effect. The exploration of the phenotypic space varies exponentially with the cumulative inclusive fitness effect over state space, which determines an adaptive landscape. The peaks of the landscapes are those phenotypes that are candidate evolutionary stable strategies and can be determined by standard phenotypic selection gradient methods (e.g. evolutionary game theory, kin selection theory, adaptive dynamics). The curvature of the stationary distribution provides a measure of the stability by convergence of candidate evolutionary stable strategies, and it is evaluated explicitly for two biological scenarios: first, a coordination game, which illustrates that, for a multipeaked adaptive landscape, stochastically stable strategies can be singled out by letting the size of the gene pool grow large; second, a sex-allocation game for diploids and haplo-diploids, which suggests that the equilibrium sex ratio follows a Beta distribution with parameters depending on the features of the genetic system.
Resumo:
Abstract Carotenoids typically need reflective background components to shine. Such components, iridophores, leucophores, and keratin- and collagen-derived structures, are generally assumed to show no or little environmental variability. Here, we investigate the origin of environmentally induced variation in the carotenoid-based ventral coloration of male common lizards (Lacerta vivipara) by investigating the effects of dietary carotenoids and corticosterone on both carotenoid- and background-related reflectance. We observed a general negative chromatic change that was prevented by β-carotene supplementation. However, chromatic changes did not result from changes in carotenoid-related reflectance or skin carotenoid content but from changes in background-related reflectance that may have been mediated by vitamin A. An in vitro experiment showed that the encountered chromatic changes most likely resulted from changes in iridophore reflectance. Our findings demonstrate that chromatic variation in carotenoid-based ornaments may not exclusively reflect differences in integumentary carotenoid content and, hence, in qualities linked to carotenoid deposition (e.g., foraging ability, immune response, or antioxidant capacity). Moreover, skin carotenoid content and carotenoid-related reflectance were related to male color polymorphism, suggesting that carotenoid-based coloration of male common lizards is a multicomponent signal, with iridophores reflecting environmental conditions and carotenoids reflecting genetically based color morphs.