97 resultados para Adulterated dietary supplements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Oxidative stress is involved in the development of secondary tissue damage and organ failure. Micronutrients contributing to the antioxidant (AOX) defense exhibit low plasma levels during critical illness. The aim of this study was to investigate the impact of early AOX micronutrients on clinical outcome in intensive care unit (ICU) patients with conditions characterized by oxidative stress. METHODS: We conducted a prospective, randomized, double-blind, placebo-controlled, single-center trial in patients admitted to a university hospital ICU with organ failure after complicated cardiac surgery, major trauma, or subarachnoid hemorrhage. Stratification by diagnosis was performed before randomization. The intervention was intravenous supplements for 5 days (selenium 270 microg, zinc 30 mg, vitamin C 1.1 g, and vitamin B1 100 mg) with a double-loading dose on days 1 and 2 or placebo. RESULTS: Two hundred patients were included (102 AOX and 98 placebo). While age and gender did not differ, brain injury was more severe in the AOX trauma group (P = 0.019). Organ function endpoints did not differ: incidence of acute kidney failure and sequential organ failure assessment score decrease were similar (-3.2 +/- 3.2 versus -4.2 +/- 2.3 over the course of 5 days). Plasma concentrations of selenium, zinc, and glutathione peroxidase, low on admission, increased significantly to within normal values in the AOX group. C-reactive protein decreased faster in the AOX group (P = 0.039). Infectious complications did not differ. Length of hospital stay did not differ (16.5 versus 20 days), being shorter only in surviving AOX trauma patients (-10 days; P = 0.045). CONCLUSION: The AOX intervention did not reduce early organ dysfunction but significantly reduced the inflammatory response in cardiac surgery and trauma patients, which may prove beneficial in conditions with an intense inflammation. TRIALS REGISTRATION: Clinical Trials.gov RCT Register: NCT00515736.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In high-income countries, high socioeconomic status (SES) is generally associated with a healthier diet, but whether social differences in dietary intake are also present in low- and middle-income countries (LMICs) remains to be established. OBJECTIVE: We performed a systematic review of studies that assessed the relation between SES and dietary intake in LMICs. DESIGN: We carried out a systematic review of cohort and cross-sectional studies in adults in LMICs and published between 1996 and 2013. We assessed associations between markers of SES or urban and rural settings and dietary intake. RESULTS: A total of 33 studies from 17 LMICs were included (5 low-income countries and 12 middle-income countries; 31 cross-sectional and 2 longitudinal studies). A majority of studies were conducted in Brazil (8), China (6), and Iran (4). High SES or living in urban areas was associated with higher intakes of calories; protein; total fat; cholesterol; polyunsaturated, saturated, and monounsaturated fatty acids; iron; and vitamins A and C and with lower intakes of carbohydrates and fiber. High SES was also associated with higher fruit and/or vegetable consumption, diet quality, and diversity. Although very few studies were performed in low-income countries, similar patterns were generally observed in both LMICs except for fruit intake, which was lower in urban than in rural areas in low-income countries. CONCLUSIONS: In LMICs, high SES or living in urban areas is associated with overall healthier dietary patterns. However, it is also related to higher energy, cholesterol, and saturated fat intakes. Social inequalities in dietary intake should be considered in the prevention and control of noncommunicable diseases in LMICs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today, there are still uncertainties about the role of exogenous fat on body fat regulation. Early models of energy utilization (for example, Kleiber's, early 20th century) failed to take into account the nature of substrate oxidized in the control of food intake, whereas more recent models (e.g., Flatt's model, end of 20th century) did. Excess body fat storage is ultimately a problem of chronic positive energy balance mediated by a poor control of energy intake or/and a blunted total energy expenditure. Excess fat storage can stem from exogenous fat and to a more limited extent by nonfat substrates precursors transformed into body fat, mostly from carbohydrates, a process known as de novo lipogenesis. When considered over periods of weeks, months or years, total fat balance is closely related to energy balance. Over periods of days, the net change in fat balance is quantitatively limited as compared to the size of endogenous fat storage. The issues discussed in this article primarily include the stimulation of de novo lipogenesis after acute or prolonged CHO overfeeding and whether de novo lipogenesis is a risk factor for obesity development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypomagnesemia and hypophosphatemia are frequent after severe burns; however, increased urinary excretion does not sufficiently explain the magnitude of the mineral depletion. We measured the mineral content of cutaneous exudates during the first week after injury. Sixteen patients aged 34 +/- 9 y (mean +/- SD) with thermal burns were studied prospectively and divided in 3 groups according to the extent of their burn injury and the presence or absence of mineral supplements: group 1 (n = 5), burns covering 26 +/- 5% of body surface; group 2 (n = 6), burns covering 41 +/- 10%; and group 3 (n = 5), burns covering 42 +/- 6% with prescription of magnesium and phosphate supplements. Cutaneous exudates were extracted from the textiles (surgical drapes, dressings, sheets, etc) surrounding the patients from day 1 to day 7 after injury. Mean magnesium serum concentrations decreased below reference ranges in 12 patients between days 1 and 4 and normalized thereafter. Phosphate, normal on day 0, was low during the first week. Albumin concentrations, normal on day 0, decreased and remained low. Urinary magnesium and phosphate excretion were within reference ranges and not larger in group 3. Mean daily cutaneous losses were 16 mmol Mg/d and 11 mmol P/d (largest in group 2). Exudative magnesium losses were correlated with burn severity (r = 0.709, P = 0.003). Cutaneous magnesium losses were nearly four times larger than urinary losses whereas cutaneous phosphate losses were smaller than urinary phosphate losses. Mean daily losses of both magnesium and phosphate were more than the recommended dietary allowances. Exudative losses combined with urinary losses largely explained the increased mineral requirements after burn injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein-coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY :Non-alcoholic fatty liver disease (NAFLD) is characterized by an elevated intra- hepatocellular lipid (IHCL) concentration (> 5%). The incidence of NAFLD is frequently increased in obese patients, and is considered to be the hepatic component of the metabolic syndrome. The metabolic syndrome, also characterized by visceral obesity, altered glucose homeostasis, insulin resistance, dyslipidemia, and high blood pressure, represents actually a major public health burden. Both dietary factors and low physical activity are involved in the development of the metabolic syndrome. ln animals and healthy humans, high-fat or high-fructose diets lead to the development of several features of the metabolic syndrome including increased intrahepatic lipids and insulin resistance. ln contrast the effects of dietary protein are less well known, but an increase in protein intake has been suggested to exert beneficial effects by promoting weight loss and improving glucose homeostasis in insulin-resistant patients. Increased postprandial thermogenesis and enhanced satiety after protein ingestion may be both involved. The effects of dietary protein on hepatic lipids have been poorly investigated in humans, but preliminary studies in rodents have shown a reduction of hepatic lipids in carbohydrate fed rats and in obese rats. ln this context this work aimed at investigating the metabolic effects of dietary protein intake on hepatic lipid metabolism and glucose homeostasis in humans. The modulation by dietary proteins of exogenous lipid oxidation, net lipid oxidation, hepatic beta-oxidation, triglycerides concentrations, whole-body energy expenditure and glucose tolerance was assessed in the fasting state and in postprandial states. Measurements of IHCL were performed to quantify the amount of triglycerides in the liver. ln an attempt to cover all these metabolic aspects under different point of views, these questions were addressed by three protocols involving various feeding conditions. Study I addressed the effects of a 4-day hypercaloric high-fat high-protein diet on the accumulation of fat in the liver (IHCL) and on insulin sensitivity. Our findings indicated that a high protein intake significantly prevents intrahepatic fat deposition induced by a short- term hypercaloric high-fat diet, adverse effects of which are presumably modulated at the liver level.These encouraging results led us to conduct the second study (Study ll), as we were also interested in a more clinical approach to protein administration and especially if increased protein intakes might be of benefit for obese patients. Therefore the effects of one-month whey protein supplementation on IHCL, insulin sensitivity, lipid metabolism, glucose tolerance and renal function were assessed in obese women. Results showed that whey protein supplementation reduces hepatic steatosis and improves the plasma lipid profile in obese patients, without adverse effects on glucose tolerance or creatinine clearance. However since patients were fed ud-libitum, it remains possible that spontaneous carbohydrate and fat intakes were reduced due to the satiating effects of protein. The third study (Study lll) was designed in an attempt to deepen our comprehension about the mechanisms involved in the modulation of IHCL. We hypothesized that protein improved lipid metabolism and, therefore, we evaluated the effects of a high protein meal on postprandial lipid metabolism and glucose homeostasis after 4-day on a control or a protein diet. Our results did not sustain the hypothesis of an increased postprandial net lipid oxidation, hepatic beta oxidation and exogenous lipid oxidation. Four days on a high-protein diet rather decreased exogenous fat oxidation and enhanced postprandial triglyceride concentrations, by impairing probably chylomicron-TG clearance. Altogether the results of these three studies suggest a beneficial effect of protein intake on the reduction in lHCL, and clearly show that supplementation of proteins do not reduce IHCL by stimulating lipid metabolism, e.g. whole body fat oxidation, hepatic beta oxidation, or exogenous fat oxidation. The question of the effects of high-protein intakes on hepatic lipid metabolism is still open and will need further investigation to be elucidated. The effects of protein on increased postprandial lipemia and lipoproteins kinetics have been little investigated so far and might therefore be an interesting research question, considering the tight relationship between an elevation of plasmatic TG concentrations and the increased incidence of cardiovascular diseases.Résumé :La stéatose hépatique non alcoolique se caractérise par un taux de lipides intra-hépatiques élevé, supérieur à 5%. L'incidence de la stéatose hépatique est fortement augmentée chez les personnes obèses, ce qui mène à la définir comme étant la composante hépatique du syndrome métabolique. Ce syndrome se définit aussi par d'autres critères tels qu'obésité viscérale, altération de l'homéostasie du glucose, résistance à l'insuline, dyslipidémie et pression artérielle élevée. Le syndrome métabolique est actuellement un problème de santé publique majeur.Tant une alimentation trop riche et déséquilibrée, qu'une faible activité physique, semblent être des causes pouvant expliquer le développement de ce syndrome. Chez l'animal et le volontaire sain, des alimentations enrichies en graisses ou en sucres (fructose) favorisent le développement de facteurs associés au syndrome métabolique, notamment en augmentant le taux de lipides intra-hépatiques et en induisant le développement d'une résistance à l'insuline. Par ailleurs, les effets des protéines alimentaires sont nettement moins bien connus, mais il semblerait qu'une augmentation de l'apport en protéines soit bénéfique, favorisant la perte de poids et l'homéostasie du glucose chez des patients insulino-résistants. Une augmentation de la thermogenese postprandiale ainsi que du sentiment de satiété pourraient en être à l'origine.Les effets des protéines sur les lipides intra-hépatiques chez l'homme demeurent inconnus à ce jour, cependant des études préliminaires chez les rongeurs tendent à démontrer une diminution des lipides intra hépatiques chez des rats nourris avec une alimentation riche en sucres ou chez des rats obèses.Dans un tel contexte de recherche, ce travail s'est intéressé à l'étude des effets métaboliques des protéines alimentaires sur le métabolisme lipidique du foie et sur l'homéostasie du glucose. Ce travail propose d'évaluer l'effet des protéines alimentaires sur différentes voies métaboliques impliquant graisses et sucres, en ciblant d'une part les voies de l'oxydation des graisses exogènes, de la beta-oxydation hépatique et de l'oxydation nette des lipides, et d'autre part la dépense énergétique globale et l'évolution des concentrations sanguines des triglycérides, à jeun et en régime postprandial. Des mesures des lipides intra-hépatiques ont aussi été effectuées pour permettre la quantification des graisses déposées dans le foie.Dans le but de couvrir l'ensemble de ces aspects métaboliques sous différents angles de recherche, trois protocoles, impliquant des conditions alimentaires différentes, ont été entrepris pour tenter de répondre à ces questions. La première étude (Etude I) s'est intéressée aux effets d'u.ne suralimentation de 4 jours enrichie en graisses et protéines sur la sensibilité à l'insuline et sur l'accumulation de graisses intra-hépatiques. Les résultats ont démontré que l'apport en protéines prévient l'accumulation de graisses intra-hépatiques induite par une suralimentation riche en graisses de courte durée ainsi que ses effets délétères probablement par le biais de mécanismes agissant au niveau du foie. Ces résultats encourageants nous ont conduits à entreprendre une seconde étude (Etude ll) qui s'intéressait à l'implication clinique et aux bénéfices que pouvait avoir une supplémentation en protéines sur les graisses hépatiques de patients obèses. Ainsi nous avons évalué pendant un mois de supplémentation l'effet de protéines de lactosérum sur le taux de graisses intrahépatiques, la sensibilité à l'insuline, la tolérance au glucose, le métabolisme des graisses et la fonction rénale chez des femmes obèses. Les résultats ont été encourageants; la supplémentation en lactosérum améliore la stéatose hépatique, le profil lipidique des patientes obèses sans pour autant altérer la tolérance au glucose ou la clairance de la créatinine. L'effet satiétogene des protéines pourrait aussi avoir contribué à renforcer ces effets. La troisième étude s'est intéressée aux mécanismes qui sous-tendent les effets bénéfiques des protéines observés dans les 2 études précédentes. Nous avons supposé que les protéines devaient favoriser le métabolisme des graisses. Par conséquent, nous avons cherché a évaluer les effets d'un repas riche en protéines sur la lipémie postprandiale et l'homéostasie glucidique après 4 jours d'alimentation contrôlée soit isocalorique et équilibrée, soit hypercalorique enrichie en protéines. Les résultats obtenus n'ont pas vérifié l'hypothèse initiale ; ni une augmentation de l'oxydation nette des lipides, ni celle d'une augmentation de la béta-oxydation hépatique ou de l'oxydation d'un apport exogène de graisses n'a pu étre observée. A contrario, il semblerait même plutôt que 4 jours d'a]irnentation hyperprotéinée inhibent le métabolisme des graisses et augmente les concentrations sanguines de triglycérides, probablement par le biais d'une clairance de chylornicrons altérée. Globalement, les résultats de ces trois études nous permettent d'attester que les protéines exercent un effet bénéfique en prévenant le dépot de graisses intra-hépatiques et montrent que cet effet ne peut être attribué à une stimulation du métabolisme des lipides via l'augmentation des oxydations des graisses soit totales, hépatiques, ou exogènes. La question demeure en suspens à ce jour et nécessite de diriger la recherche vers d'autres voies d'exploration. Les effets des protéines sur la lipémie postprandiale et sur le cinétique des lipoprotéines n'a que peu été traitée à ce jour. Cette question me paraît néanmoins importante, sachant que des concentrations sanguines élevées de triglycérides sont étroitement corrélées à une incidence augmentée de facteurs de risque cardiovasculaire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commentary on: Li K, Kaaks R, Linseisen J, et al . Associations of dietary calcium intake and calcium supplementation with myocardial infarction and stroke risk and overall cardiovascular mortality in the Heidelberg cohort of the European prospective investigation into cancer and nutrition study (EPIC-Heidelberg). Heart 2012; 98 :920 - 5

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To assess the effects, on food intake, body weight and body composition, of compliance to advice aiming at increasing the carbohydrate to fat ratio of the everyday diet without imposing voluntary restriction on the amount of food consumed. DESIGN: Eight moderately overweight women (body mass index > 27 kg/m2, relative body fat mass > 30%) received dietary advice during a 2 month period. Additionally, each evening the subjects had to consume a meal artificially enriched with 13C-glucose in order to assess their compliance from the 13CO2 enrichment in expired air. MEASUREMENTS: Dietary intakes, body weight, body composition and individual compliance. RESULTS: The energy derived from fat decreased from 44 +/- 1% to 31 +/- 1% and the proportion of carbohydrate increased from 38 +/- 2% to 50 +/- 1%, whereas the absolute carbohydrate intake remained constant (182 +/- 18 g/d). Energy intake decreased by 1569 +/- 520 kJ/d. There was a net loss of fat mass (1.7 +/- 0.7 kg, P = 0.016) with fat free mass maintenance. Dietary compliance ranged from 20 to 93% (mean: 60 +/- 8%) and was positively correlated to the loss of body fat mass. CONCLUSION: Advice aiming at increasing diet's carbohydrate to fat ratio induces a loss of fat mass with fat-free mass maintenance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) of marine origin exert multiple beneficial effects on health. Our previous study in mice showed that reduction of adiposity by LC n-3 PUFA was associated with both, a shift in adipose tissue metabolism and a decrease in tissue cellularity. The aim of this study was to further characterize the effects of LC n-3 PUFA on fat cell proliferation and differentiation in obese mice. METHODS: A model of inducible and reversible lipoatrophy (aP2-Cre-ERT2 PPARgammaL2/L2 mice) was used, in which the death of mature adipocytes could be achieved by a selective ablation of peroxisome proliferator-activated receptor gamma in response to i.p. injection of tamoxifen. Before the injection, obesity was induced in male mice by 8-week-feeding a corn oil-based high-fat diet (cHF) and, subsequently, mice were randomly assigned (day 0) to one of the following groups: (i) mice injected by corn-oil-vehicle only, i.e."control" mice, and fed cHF; (ii) mice injected by tamoxifen in corn oil, i.e. "mutant" mice, fed cHF; (iii) control mice fed cHF diet with 15% of dietary lipids replaced by LC n-3 PUFA concentrate (cHF+F); and (iv) mutant mice fed cHF+F. Blood and tissue samples were collected at days 14 and 42. RESULTS: Mutant mice achieved a maximum weight loss within 10 days post-injection, followed by a compensatory body weight gain, which was significantly faster in the cHF as compared with the cHF+F mutant mice. Also in control mice, body weight gain was depressed in response to dietary LC n-3 PUFA. At day 42, body weights in all groups stabilized, with no significant differences in adipocyte size between the groups, although body weight and adiposity was lower in the cHF+F as compared with the cHF mice, with a stronger effect in the mutant than in control mice. Gene expression analysis documented depression of adipocyte maturation during the reconstitution of adipose tissue in the cHF+F mutant mice. CONCLUSION: Dietary LC n-3 PUFA could reduce both hypertrophy and hyperplasia of fat cells in vivo. Results are in agreement with the involvement of fat cell turnover in control of adiposity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explores the potential use of stable carbon isotope ratios (delta C-13) of single fatty acids (FA) as tracers for the transformation of FA from diet to milk, with focus on the metabolic origin of c9,t11-18:2. For this purpose, dairy cows were fed diets based exclusively on C-3 and C-4 plants. The FA in milk and feed were fractionated by silver-ion thin-layer chromatography and analyzed for their delta C-13 values. Mean delta C-13 values of FA from C-3 milk were lower compared to those from C-4 milk (-30.1aEuro degrees vs. -24.9aEuro degrees, respectively). In both groups the most negative delta C-13 values of all FA analyzed were measured for c9,t11-18:2 (C-3 milk = -37.0 +/- A 2.7aEuro degrees; C-4 milk -31.4 +/- A 1.4aEuro degrees). Compared to the dietary precursors 18:2n-6 and 18:3n-3, no significant C-13-depletion was measured in t11-18:1. This suggests that the delta C-13-change in c9,t11-18:2 did not originate from the microbial biohydrogenation in the rumen, but most probably from endogenous desaturation of t11-18:1. It appears that the natural delta C-13 differences in some dietary FA are at least partly preserved in milk FA. Therefore, carbon isotope analyses of individual FA could be useful for studying metabolic transformation processes in ruminants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trends in compliance with the dietary recommendations of the Swiss Society for Nutrition in the Geneva population were assessed for the period from 1999 to 2009 using 10 cross-sectional, population-based surveys (Bus Santé study) with a total of 9,320 participants aged 35 to 75 years (50% women). Dietary intake was assessed using a self-administered, validated, semi-quantitative food frequency questionnaire. Trends were assessed by logistic regression adjusting for age, smoking status, education, and nationality using survey year as the independent variable. After excluding participants with extreme intakes, the percentage of participants with a cholesterol intake of <300 mg/day increased from 40.8% in 1999 to 43.6% in 2009 for men (multivariate-adjusted P for trend=0.04) and from 57.8% to 61.4% in women (multivariate-adjusted P for trend=0.06). Calcium intake >1 g/day decreased from 53.3% to 46% in men and from 47.6% to 40.7% in women (multivariate-adjusted P for trend<0.001). Adequate iron intake decreased from 68.3% to 65.3% in men and from 13.3% to 8.4% in women (multivariate-adjusted P for trend<0.001). Conversely, no significant changes were observed for carbohydrates, protein, total fat (including saturated, monounsaturated, and polyunsaturated fatty acids), fiber, and vitamins D and A. We conclude that the quality of the Swiss diet did not improve between 1999 and 2009 and that intakes deviate substantially from expert recommendations for health promotion and chronic disease risk reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: It has been reported that a high protein diet improves insulin sensitivity and reduces ectopic lipids in animals and humans with the metabolic syndrome. We therefore tested the hypothesis that a high dietary protein content may stimulate whole body lipid oxidation and alter post-prandial triglyceride (TG) after fructose ingestion. METHODS: The post-prandial metabolism of 8 young males was studied after two 6-day periods of hyper-energetic, high fructose diet (HiFruD), and after two 6-day periods of hyper-energetic high fructose high protein diet (HiFruHiProD). The order with which these periods were applied was randomized. At the end of each period, either a low protein, (13)C fructose test meal (Fru meal) or a high protein, (13)C fructose test meal (HiPro Fru meal) was administered. This resulted in the monitoring of metabolic parameters at 4 occasions in random order: a) with Fru meal ingested after HiFruD, b) with HiPro Fru meal ingested after HiFruD, c) with Fru meal ingested after HiFruHiProD or d) with HiPro Fru meal ingested after HiFruHiProD. On each occasion, post-prandial TG concentrations were monitored, energy expenditure and substrate metabolism were measured by indirect calorimetry, and fructose-induced gluconeogenesis was evaluated by measuring plasma (13)C-labeled glucose. RESULTS: TG responses to fructose ingestion were significantly higher after a hyper-energetic HiFruHiProD and after HiPro Fru meals than after a Fru meal ingested after a hyper-energetic HiFruD. Compared to low protein meals, high protein meals increased post-prandial energy expenditure, inhibited post-prandial lipid oxidation, and enhanced fructose-induced gluconeogenesis. These effects were similar with HiFruD and HiFruHiProD. CONCLUSIONS: Dietary proteins did not increase lipid oxidation and increased fructose-induced post-prandial TG in healthy humans fed an hyper-energetic, high fructose diet.