210 resultados para Activated Potassium
Resumo:
RESUME :Introduction. Les maladies cardiovasculaires représentent la première cause de mortalité dans les pays développés et l'insuffisance cardiaque (IC) est la plus fréquente. Suite à un infarctus, le coeur des patients subit un remodelage ventriculaire pouvant évoluer vers un état d'IC. L'IC se définit comme un état dans lequel le coeur n'est plus capable d'approvisionner suffisamment les organes et cet état s'accompagne souvent de troubles du rythme cardiaque. Le remodelage ventriculaire touche de nombreux gènes codant à la fois pour les voies métaboliques et pour des canaux ioniques favorisant ainsi l'apparition des arythmies responsables de la mort subite des patients atteints d'IC. Comprendre ce passage entre remodelage et IC est crucial afin de pouvoir un jour prévenir l'IC et les complications médicales qui l'accompagnent. Nous nous sommes intéressés aux canaux potassiques dépendants de l'ATP (KATP) car ces canaux ont la capacité de coupler le métabolisme de la cellule à son activité électrique. En effet, les canaux KATP s'ouvrent quand la charge énergétique (rapport ATP/ ADP) de la cellule chute. Dans les cardiomyocytes, l'ouverture des KATP induit une hyperpolarisation de la membrane cellulaire ce qui diminue indirectement la surcharge calcique et de ce fait préserve la cellule. Les canaux KATp sont formés de 4 sous-unités Kir6.x (Kir6.1 ou Kir6.2) formant le pore du canal associées à 4 sous-unités régulatrices SUR. Les propriétés électrophysiologiques ainsi que la sensibilité pharmacologique des canaux KATP dépendent de leur composition et seuls les canaux KATP formés par la sous-unité Kirô.l sont activés par le diazoxyde.Méthodes et résultats. Nous avons d'abord montré dans un modèle in vivo d'IC chez le rat adulte que les sous-unités Kir6.1 et SUR sont surexprimées dans ces conditions pathologiques. Par ailleurs, les cardiomyocytes issus des coeurs infarcis deviennent sensibles au diazoxyde reflétant la surexpression de Kir6.1. Les potentiels d'action qui sont prolongés dans l'IC et qui sont à l'origine d'arythmies majeures sont normalisés par l'ouverture des canaux KATp induite par le diazoxyde. Ainsi, l'ouverture pharmacologique des canaux KATp contribuerait à la cardio-protection. Dans une seconde partie, nous avons déterminé quels étaient les facteurs de transcription responsables de ce changement d'expression des sous-unités formant les KATP. Dans notre modèle, nous avons pu montrer que la surexpression de Kirô.l est due aux facteurs de transcription Fox03 et FoxF2 qui est aussi responsable de la surexpression des sous-unités SUR. Dans la dernière partie de ce travail, nous avons mis au point un modèle d'IC in vitro en cultivant les cardiomyocytes de rats adultes en présence d'angiotensine II (Angll) ou de TNFa. Ce modèle expérimental nous a non seulement permis de mettre en relation l'importance de L'AnglI et du TNFa sur le remodelage des canaux KATP mais aussi de développer un modèle in vitro présentant les mêmes caractéristiques que le modèle in vivo concernant le remodelage des KATP lors de l'IC. Ce dernier modèle expérimental ouvre des perspectives afin de mieux caractériser les voies de signalisation impliquées dans le remodelage des canaux KATp lors de l'IC.Conclusion. Les canaux KATp subissent un remodelage lors de l'IC et les résultats obtenus montrent le potentiel cardio-protecteur de ces canaux.ABSTRACT :Background and aim. Cardiovascular disease is the leading cause of death in developed countries and heart failure (HF) is the most common. Following myocardial infarction, the heart of the patient undergoes ventricular remodeling which may evolve toward a state of HF. HF is defined as a state in which heart is unable to supply enough blood to organs and this state is often accompanied by cardiac arrhythmias. Ventricular remodeling involves many genes coding for both metabolic enzymes and ion channels. Changes in ion channel expression can promote arrhythmias responsible for sudden death in patients with HF. A better understanding of the transition between remodeling and HF is crucial in order to prevent the complications associated to HF We were interested in ATP-dependent potassium channels (KATp) because they couple cell metabolism to electrical activity of the cell. Indeed, KATP channels open when the energy charge (ratio of ATP / ADP) of the cell collapses. In cardiomyocytes, the opening of KATP channels induces hyper- polanzation of the cell membrane which reduces calcium overload and thereby protects the cell. KATp channels are composed by 4 Kir6.x subumts (Kir6.1 or Kir6.2) forming the pore channel associated with 4 regulatory subunits SUR. The electrophysiological properties as well as pharmacological sensitivity of KATp channels depend on their composition and only KATP channels formed by Kir6.1 subunit are activated by diazoxide.Methods and results. Firstly, using an in vivo model of HF in adult rats, we showed that Kir6.1 and SUR subunits are overexpressed in HF. In addition, cardiomyocytes from post-infarction hearts became sensitive to diazoxide reflecting the overexpression of the Kir6.1 subunit. The opening of KATP by diazoxide tended to reduce the action potential duration (APD) which is extended in HF. This increase in APD is known to be a major source of arrhythmias during HF. Therefore, the opening of KATP channels by diazoxide would be cardio-protective. Secondly, we wanted to determine which transcription factors were responsible for this KATP remodeling. In our model of HF, we showed that overexpression of Kir6.1 is due to the transcription factors Fox03 and FOXF2 which is also responsible for SUR subunits overexpression. Thirdly, we developed an in vitro model of HF by cultivation of adult rat cardiomyocytes in the presence of angiotensin II (Angll) or TNFa. This model is very interesting not only because it underlines the importance of Angll and TNFa in KATp remodeling but also because this in vitro model presents the same KATP remodeling as the in vivo model of HF. These findings show that our in vitro model of HF opens up many possibilities to investigate more precisely the signaling pathways involved in remodeling of the KATP channels in HF.Conclusion. KATP channels undergo remodeling during HF and our results show the cardio¬protective potential of KATP channels in this disease.
Resumo:
The dynamic properties of helix 12 in the ligand binding domain of nuclear receptors are a major determinant of AF-2 domain activity. We investigated the molecular and structural basis of helix 12 mobility, as well as the involvement of individual residues with regard to peroxisome proliferator-activated receptor alpha (PPARalpha) constitutive and ligand-dependent transcriptional activity. Functional assays of the activity of PPARalpha helix 12 mutants were combined with free energy molecular dynamics simulations. The agreement between the results from these approaches allows us to make robust claims concerning the mechanisms that govern helix 12 functions. Our data support a model in which PPARalpha helix 12 transiently adopts a relatively stable active conformation even in the absence of a ligand. This conformation provides the interface for the recruitment of a coactivator and results in constitutive activity. The receptor agonists stabilize this conformation and increase PPARalpha transcription activation potential. Finally, we disclose important functions of residues in PPARalpha AF-2, which determine the positioning of helix 12 in the active conformation in the absence of a ligand. Substitution of these residues suppresses PPARalpha constitutive activity, without changing PPARalpha ligand-dependent activation potential.
Resumo:
Ischemic acute renal failure is characterized by damages to the proximal straight tubule in the outer medulla. Lesions include loss of polarity, shedding into the tubule lumen, and eventually necrotic or apoptotic death of epithelial cells. It was recently shown that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) increases keratinocyte survival after an inflammatory reaction. Therefore, whether PPARbeta/delta could contribute also to the control of tubular epithelium death after renal ischemia/reperfusion was tested. It was found that PPARbeta/delta+/- and PPARbeta/delta-/- mutant mice exhibited much greater kidney dysfunction and injury than wild-type counterparts after a 30-min renal ischemia followed by a 36-h reperfusion. Conversely, wild-type mice that were given the specific PPARbeta/delta ligand L-165041 before renal ischemia were completely protected against renal dysfunction, as indicated by the lack of rise in serum creatinine and fractional excretion of Na+. This protective effect was accompanied by a significant reduction in medullary necrosis, apoptosis, and inflammation. On the basis of in vitro studies, PPARbeta/delta ligands seem to exert their role by activating the antiapoptotic Akt signaling pathway and, unexpectedly, by increasing the spreading of tubular epithelial cells, thus limiting potentially their shedding and anoikis. These results point to PPARbeta/delta as a remarkable new target for preconditioning strategies.
Resumo:
Peroxisome proliferator-activated receptors, PPARalpha, PPARbeta/delta and PPARgamma, are fatty acid activated transcription factors that belong to the nuclear hormone receptor family. While they are best known as transcriptional regulators of lipid and glucose metabolism, evidence has also accumulated for their importance in skin homeostasis. The three PPAR isotypes are expressed in rodent and human skin. Various cell culture and in vivo approaches suggest that PPARalpha contributes to fetal skin development, to epidermal barrier maturation and to sebocyte activity. PPARbeta/delta regulates sebocyte differentiation, promotes hair follicle growth and has pro-differentiating effects in keratinocytes in normal and inflammatory conditions. In contrast, the role of PPARgamma appears to be rather minor in keratinocytes, whereas its activity is required for sebaceous gland differentiation. Importantly, PPARalpha and beta/delta are instrumental in skin repair after an injury, each of them playing specific roles. Due to their collective diverse functions in skin biology, PPARs represent a major research target for the understanding and treatment of many skin diseases, such as benign epidermal tumors, papillomas, acne vulgaris and psoriasis.
Resumo:
Background and objectives In humans, circulating CD4(+)CD25(high) T cells contain mainly regulatory T cells (Treg; FoxP3(+)IL-7R alpha(low)), but a small subset is represented by activated effector T cells (Tact; FoxP3(-)IL-7R alpha(high)). The balance between Tact and Treg may be important after transplantation. The aim of this study was first to analyze and correlate CD4(+)CD25(high) Tact and Treg with the clinical status of kidney transplant recipients and second to study prospectively the effect of two immunosuppressive regimens on Tact/Treg during the first year after transplantation.Design, setting, participants, & measurements CD4(+)CD25(high) Tact and Treg were analyzed by flow cytometry, either retrospectively in 90 patients greater than 1 year after kidney transplantation (cross-sectional analysis) or prospectively in 35 patients receiving two immunosuppressive regimens after kidney transplantation (prospective analysis).Results A higher proportion of Tact and a lower proportion of Treg were found in the majority of kidney recipients. In chronic Immoral rejection, a strikingly higher proportion of Tact was present. A subgroup of stable recipients receiving calcineurin inhibitor-free immunosuppression (mycophenolate mofetil, azathioprine, or sirolimus) had Tact values that were similar to healthy individuals. In the prospective analysis, the proportion of Tact significantly increased in both immunosuppression groups during the first year after transplantation.Conclusions These data highlight distinct patterns in the proportion of circulating Tact depending on the clinical status of kidney recipients. Moreover, the prospective analysis demonstrated an increase in the proportion of Tact, regardless of the immunosuppressive regimen. The measurement of Tact, in addition to Treg, may become a useful immune monitoring tool after kidney transplantation. Clin J Am Soc Nephrol 6: 2025-2033, 2011. doi: 10.2215/CJN.09611010
Resumo:
After the landmark studies reporting changes in the cerebral metabolic rate of glucose (CMRGlc ) in excess of those in oxygen (CMRO2 ) during physiological stimulation, several studies have examined the fate of the extra carbon taken up by the brain, reporting a wide range of changes in brain lactate from 20% to 250%. The present study reports functional magnetic resonance spectroscopy measurements at 7 Tesla using the enhanced sensitivity to study a small cohort (n = 6). Small increases in lactate (19% ± 4%, P < 0.05) and glutamate (4% ± 1%, P < 0.001) were seen within the first 2 min of activation. With the exception of glucose (12% ± 5%, P < 0.001), no other metabolite concentration changes beyond experimental error were significantly observed. Therefore, the present study confirms that lactate and glutamate changes during physiological stimulation are small (i.e. below 20%) and shows that the increased sensitivity allows reproduction of previous results with fewer subjects. In addition, the initial rate of glutamate and lactate concentration increases implies an increase in CMRO2 that is slightly below that of CMRGlc during the first 1-2 min of activation.
Resumo:
Glitazones are used in the treatment of type 2 diabetes as efficient insulin sensitizers. They can, however, induce peripheral edema through an unknown mechanism in up to 18% of cases. In this double-blind, randomized, placebo-controlled, four-way, cross-over study, we examined the effects of a 6-wk administration of pioglitazone (45 mg daily) or placebo on the blood pressure, hormonal, and renal hemodynamic and tubular responses to a low (LS) and a high (HS) sodium diet in healthy volunteers. Pioglitazone had no effect on the systemic and renal hemodynamic responses to salt, except for an increase in daytime heart rate. Urinary sodium excretion and lithium clearance were lower with pioglitazone, particularly with the LS diet (P < 0.05), suggesting increased sodium reabsorption at the proximal tubule. Pioglitazone significantly increased plasma renin activity with the LS (P = 0.02) and HS (P = 0.03) diets. Similar trends were observed with aldosterone. Atrial natriuretic levels did not change with pioglitazone. Body weight increased with pioglitazone in most subjects. Pioglitazone stimulates plasma renin activity and favors sodium retention and weight gain in healthy volunteers. These effects could contribute to the development of edema in some subjects treated with glitazones.
Resumo:
Fasting is associated with significant changes in nutrient metabolism, many of which are governed by transcription factors that regulate the expression of rate-limiting enzymes. One factor that plays an important role in the metabolic response to fasting is the peroxisome proliferator-activated receptor alpha (PPARalpha). To gain more insight into the role of PPARalpha during fasting, and into the regulation of metabolism during fasting in general, a search for unknown PPARalpha target genes was performed. Using subtractive hybridization (SABRE) comparing liver mRNA from wild-type and PPARalpha null mice, we isolated a novel PPARalpha target gene, encoding the secreted protein FIAF (for fasting induced adipose factor), that belongs to the family of fibrinogen/angiopoietin-like proteins. FIAF is predominantly expressed in adipose tissue and is strongly up-regulated by fasting in white adipose tissue and liver. Moreover, FIAF mRNA is decreased in white adipose tissue of PPARgamma +/- mice. FIAF protein can be detected in various tissues and in blood plasma, suggesting that FIAF has an endocrine function. Its plasma abundance is increased by fasting and decreased by chronic high fat feeding. The data suggest that FIAF represents a novel endocrine signal involved in the regulation of metabolism, especially under fasting conditions.
Resumo:
Activation of the peroxisome proliferator-activated receptor (PPAR)-alpha increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPARalpha knockout mice with wild type and confirmed that the former developed hypoglycemia during fasting. This was associated with only a slight increase in insulin sensitivity but a dramatic increase in whole-body and adipose tissue glucose use rates in the fasting state. The white sc and visceral fat depots were larger due to an increase in the size and number of adipocytes, and their level of GLUT4 expression was higher and no longer regulated by the fed-to-fast transition. To evaluate whether these adipocyte deregulations were secondary to the absence of PPARalpha from liver, we reexpresssed this transcription factor in the liver of knockout mice using recombinant adenoviruses. Whereas more than 90% of the hepatocytes were infected and PPARalpha expression was restored to normal levels, the whole-body glucose use rate remained elevated. Next, to evaluate whether brain PPARalpha could affect glucose homeostasis, we activated brain PPARalpha in wild-type mice by infusing WY14643 into the lateral ventricle and showed that whole-body glucose use was reduced. Hence, our data show that PPARalpha is involved in the regulation of glucose homeostasis, insulin sensitivity, fat accumulation, and adipose tissue glucose use by a mechanism that does not require PPARalpha expression in the liver. By contrast, activation of PPARalpha in the brain stimulates peripheral glucose use. This suggests that the alteration in adipocyte glucose metabolism in the knockout mice may result from the absence of PPARalpha in the brain.
Resumo:
In this review, we discuss genetic evidence supporting Guyton's hypothesis stating that blood pressure control is critically depending on fluid handling by the kidney. The review is focused on the genetic dissection of sodium and potassium transport in the distal nephron and the collecting duct that are the most important sites for the control of sodium and potassium balance by aldosterone and angiotensin II. Thanks to the study of Mendelian forms of hypertension and their corresponding transgenic mouse models, three main classes of diuretic receptors (furosemide, thiazide, amiloride) and the main components of the aldosterone- and angiotensin-dependent signaling pathways were molecularly identified over the past 20years. This will allow to design rational strategies for the treatment of hypertension and for the development of the next generation of diuretics.
Resumo:
Recruitment of activated T cells to mucosal surfaces, such as the airway epithelium, is important in host defense and for the development of inflammatory diseases at these sites. We therefore asked whether the CXC chemokines IFN-induced protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC), which specifically chemoattract activated T cells by signaling through the chemokine receptor CXCR3, were inducible in respiratory epithelial cells. The effects of proinflammatory cytokines, including IFN-gamma (Th1-type cytokine), Th2-type cytokines (IL-4, IL-10, and IL-13), and dexamethasone were studied in normal human bronchial epithelial cells (NHBEC) and in two human respiratory epithelial cell lines, A549 and BEAS-2B. We found that IFN-gamma, but not TNF-alpha or IL-1 beta, strongly induced IP-10, Mig, and I-TAC mRNA accumulation mainly in NHBEC and that TNF-alpha and IL-1 beta synergized with IFN-gamma induction in all three cell types. High levels of IP-10 protein (> 800 ng/ml) were detected in supernatants of IFN-gamma/TNF-alpha-stimulated NHBEC. Neither dexamethasone nor Th2 cytokines modulated IP-10, Mig, or I-TAC expression. Since IFN-gamma is up-regulated in tuberculosis (TB), using in situ hybridization we studied the expression of IP-10 in the airways of TB patients and found that IP-10 mRNA was expressed in the bronchial epithelium. In addition, IP-10-positive cells obtained by bronchoalveolar lavage were significantly increased in TB patients compared with normal controls. These results show that activated bronchial epithelium is an important source of IP-10, Mig, and I-TAC, which may, in pulmonary diseases such as TB (in which IFN-gamma is highly expressed) play an important role in the recruitment of activated T cells.
Resumo:
RÉSUMÉL'hypertrophie cardiaque représente un mécanisme d'adaptation du myocarde en réponse à différents stress. Sur le long terme, l'hypertrophie cardiaque peut évoluer vers l'insuffisance cardiaque, l'une des principales causes de morbidité et de mortalité dans les pays industrialisés, pour cette raison, la communauté scientifique est très intéressée à élucider les voies de signalisation qui régulent ce phénomène pathologique dans le coeur.Notre laboratoire a montré que AKAP-Lbc, une protéine d'ancrage de la protéine kinase A (AKAPs), est principalement exprimée dans le coeur et peut réguler des processus importants tels que l'hypertrophie des cardiomyocytes.AKAP-Lbc fonctionne comme un facteur d'échange de nucléotides guanine (GEF) pour la petite Rho-GTPase RhoA. Cette fonction est activée par différents récepteurs qui activent son domaine Rho-GEF. Des études récentes ont démontré que AKAP-Lbc est impliquée dans la réponse hypertrophique des cardiomyocytes suite à l'activation des récepteurs α1-adrénergiques. Le but général de ce travail de thèse est la caractérisation de la voie de signalisation hypertrophique activée par AKAP-Lbc dans les cardiomyocytes.Mes travaux montrent que AKAP-Lbc organise un complexe macromoléculaire, comprenant les protéines kinases PKN, MLTK, MKK3 et p38 et active la protéine kinase p38 en réponse à l'activation des récepteurs α1-adrénergiques.Nos résultats indiquent que cette voie de signalisation au cours de la réponse hypertrophique active le facteur de transcription GATA4 et la protéine Hsp27.GATA4 est un important facteur de transcription qui régule la transcription de plusieurs gènes au cours de la réponse hypertrophique, alors que Hsp27 est une protéine chaperonne qui interagit avec le cytosquelette des cardiomyocytes et les protége contre le stress hypertrophique.Pris ensembles, ces études contribuent à comprendre comment le complexe de signalisation formé par AKAP-Lbc régule l'hypertrophie dans les cardiomyocytes. Au-delà de leur intérêt au niveau biochimique, ces travaux pourraient aussi contribuer à la compréhension du phénomène de l'hypertrophie dans le coeur.