71 resultados para Act7 Hd dtr
Resumo:
The number of patients treated by haemodialysis (HD) is continuously increasing. The complications associated with vascular accesses represent the first cause of hospitalisation in these patients. Since 2001 nephrologists, surgeons, angiologists and radiologists at the CHUV are working to develop a multidisciplinary model that includes planning and monitoring of HD accesses. In this setting the echo-Doppler represents an important tool of investigation. Every patient is discussed and decisions are taken during a weekly multidisciplinary meeting. A network has been created with nephrologists of peripheral centres and other specialists. This model allows to centralize investigational information and coordinate patient care while keeping and even developing some investigational activities and treatment in peripheral centres.
Resumo:
Astrocyte reactivity is a hallmark of neurodegenerative diseases (ND), but its effects on disease outcomes remain highly debated. Elucidation of the signaling cascades inducing reactivity in astrocytes during ND would help characterize the function of these cells and identify novel molecular targets to modulate disease progression. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is associated with reactive astrocytes in models of acute injury, but it is unknown whether this pathway is directly responsible for astrocyte reactivity in progressive pathological conditions such as ND. In this study, we examined whether the JAK/STAT3 pathway promotes astrocyte reactivity in several animal models of ND. The JAK/STAT3 pathway was activated in reactive astrocytes in two transgenic mouse models of Alzheimer's disease and in a mouse and a nonhuman primate lentiviral vector-based model of Huntington's disease (HD). To determine whether this cascade was instrumental for astrocyte reactivity, we used a lentiviral vector that specifically targets astrocytes in vivo to overexpress the endogenous inhibitor of the JAK/STAT3 pathway [suppressor of cytokine signaling 3 (SOCS3)]. SOCS3 significantly inhibited this pathway in astrocytes, prevented astrocyte reactivity, and decreased microglial activation in models of both diseases. Inhibition of the JAK/STAT3 pathway within reactive astrocytes also increased the number of huntingtin aggregates, a neuropathological hallmark of HD, but did not influence neuronal death. Our data demonstrate that the JAK/STAT3 pathway is a common mediator of astrocyte reactivity that is highly conserved between disease states, species, and brain regions. This universal signaling cascade represents a potent target to study the role of reactive astrocytes in ND.
Resumo:
Huntington's disease is a rare neurodegenerative disease caused by a pathologic CAG expansion in the exon 1 of the huntingtin (HTT) gene. Aggregation and abnormal function of the mutant HTT (mHTT) cause motor, cognitive and psychiatric symptoms in patients, which lead to death in 15-20 years. Currently, there is no treatment for HD. Experimental approaches based on drug, cell or gene therapy are developed and reach progressively to the clinic. Among them, mHTT silencing using small non-coding nucleic acids display important physiopathological benefit in HD experimental models.
Resumo:
A large number of gene products that are enriched in the striatum have ill-defined functions, although they may have key roles in age-dependent neurodegenerative diseases affecting the striatum, especially Huntington disease (HD). In the present study, we focused on Abhd11os, (called ABHD11-AS1 in human) which is a putative long noncoding RNA (lncRNA) whose expression is enriched in the mouse striatum. We confirm that despite the presence of 2 small open reading frames (ORFs) in its sequence, Abhd11os is not translated into a detectable peptide in living cells. We demonstrate that Abhd11os levels are markedly reduced in different mouse models of HD. We performed in vivo experiments in mice using lentiviral vectors encoding either Abhd11os or a small hairpin RNA targeting Abhd11os. Results show that Abhd11os overexpression produces neuroprotection against an N-terminal fragment of mutant huntingtin, whereas Abhd11os knockdown is protoxic. These novel results indicate that the loss lncRNA Abhd11os likely contribute to striatal vulnerability in HD. Our study emphasizes that lncRNA may play crucial roles in neurodegenerative diseases.
Resumo:
BACKGROUND: There is an urgent need to assess and improve the consent process in clinical trials of innovative therapies for neurodegenerative disorders. METHODS: We performed a longitudinal study of the consent of Huntington's disease patients during the Multicenter Fetal Cell Intracerebral Grafting Trial in Huntington's Disease (MIG-HD) in France and Belgium. Patients and their proxies completed a consent questionnaire at inclusion, before signing the consent form and after one year of follow-up, before randomization and transplantation. The questionnaire explored understanding of the protocol, satisfaction with the information delivered, reasons for participating in the trial and expectations regarding the transplant. Forty-six Huntington's disease patients and 27 proxies completed the questionnaire at inclusion, and 27 Huntington's disease patients and 16 proxies one year later. RESULTS: The comprehension score was high and similar for Huntington's disease patients and proxies at inclusion (72.6% vs 77.8%; P > 0.1) but only decreased in HD patients after one year. The information satisfaction score was high (73.5% vs 66.5%; P > 0.1) and correlated with understanding in both patients and proxies. The motivation and expectation profiles were similar in patients and proxies and remained unchanged after one year. CONCLUSIONS: Cognitively impaired patients with Huntington's disease were capable of consenting to participation in this trial. This consent procedure has presumably strengthened their understanding and should be proposed before signing the consent form in future gene or cell therapy trials for neurodegenerative disorders. Because of the potential cognitive decline, proxies should be designated as provisional surrogate decision-makers, even in competent patients.
Resumo:
Huntington's disease is an incurable neurodegenerative disease caused by inheritance of an expanded cytosine-adenine-guanine (CAG) trinucleotide repeat within the Huntingtin gene. Extensive volume loss and altered diffusion metrics in the basal ganglia, cortex and white matter are seen when patients with Huntington's disease (HD) undergo structural imaging, suggesting that changes in basal ganglia-cortical structural connectivity occur. The aims of this study were to characterise altered patterns of basal ganglia-cortical structural connectivity with high anatomical precision in premanifest and early manifest HD, and to identify associations between structural connectivity and genetic or clinical markers of HD. 3-Tesla diffusion tensor magnetic resonance images were acquired from 14 early manifest HD subjects, 17 premanifest HD subjects and 18 controls. Voxel-based analyses of probabilistic tractography were used to quantify basal ganglia-cortical structural connections. Canonical variate analysis was used to demonstrate disease-associated patterns of altered connectivity and to test for associations between connectivity and genetic and clinical markers of HD; this is the first study in which such analyses have been used. Widespread changes were seen in basal ganglia-cortical structural connectivity in early manifest HD subjects; this has relevance for development of therapies targeting the striatum. Premanifest HD subjects had a pattern of connectivity more similar to that of controls, suggesting progressive change in connections over time. Associations between structural connectivity patterns and motor and cognitive markers of disease severity were present in early manifest subjects. Our data suggest the clinical phenotype in manifest HD may be at least partly a result of altered connectivity. Hum Brain Mapp 36:1728-1740, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
PURPOSE: This study aims to investigate physical performance and hematological changes in 32 elite male team-sport players after 14 d of "live high-train low" (LHTL) training in normobaric hypoxia (≥14 h·d at 2800-3000 m) combined with repeated-sprint training (six sessions of four sets of 5 × 5-s sprints with 25 s of passive recovery) either in normobaric hypoxia at 3000 m (LHTL + RSH, namely, LHTLH; n = 11) or in normoxia (LHTL + RSN, namely, LHTL; n = 12) compared with controlled "live low-train low" (LLTL; n = 9) training. METHODS: Before (Pre), immediately after (Post-1), and 3 wk after (Post-2) the intervention, hemoglobin mass (Hbmass) was measured in duplicate [optimized carbon monoxide (CO) rebreathing method], and vertical jump, repeated-sprint (8 × 20 m-20 s recovery), and Yo-Yo Intermittent Recovery level 2 (YYIR2) performances were tested. RESULTS: Both hypoxic groups similarly increased their Hbmass at Post-1 and Post-2 in reference to Pre (LHTLH: +4.0%, P < 0.001 and +2.7%, P < 0.01; LHTL: +3.0% and +3.0%, both P < 0.001), whereas no change occurred in LLTL. Compared with Pre, YYIR2 performance increased by ∼21% at Post-1 (P < 0.01) and by ∼45% at Post-2 (P < 0.001), with no difference between the two intervention groups (vs no change in LLTL). From Pre to Post-1, cumulated sprint time decreased in LHTLH (-3.6%, P < 0.001) and LHTL (-1.9%, P < 0.01), but not in LLTL (-0.7%), and remained significantly reduced at Post-2 (-3.5%, P < 0.001) in LHTLH only. Vertical jump performance did not change. CONCLUSIONS: "Live high-train low and high" hypoxic training interspersed with repeated sprints in hypoxia for 14 d (in season) increases the Hbmass, YYIR2 performance, and repeated-sprint ability of elite field team-sport players, with benefits lasting for at least 3 wk postintervention.
Resumo:
STUDY QUESTION: What are the long term trends in the total (live births, fetal deaths, and terminations of pregnancy for fetal anomaly) and live birth prevalence of neural tube defects (NTD) in Europe, where many countries have issued recommendations for folic acid supplementation but a policy for mandatory folic acid fortification of food does not exist? METHODS: This was a population based, observational study using data on 11 353 cases of NTD not associated with chromosomal anomalies, including 4162 cases of anencephaly and 5776 cases of spina bifida from 28 EUROCAT (European Surveillance of Congenital Anomalies) registries covering approximately 12.5 million births in 19 countries between 1991 and 2011. The main outcome measures were total and live birth prevalence of NTD, as well as anencephaly and spina bifida, with time trends analysed using random effects Poisson regression models to account for heterogeneities across registries and splines to model non-linear time trends. SUMMARY ANSWER AND LIMITATIONS: Overall, the pooled total prevalence of NTD during the study period was 9.1 per 10 000 births. Prevalence of NTD fluctuated slightly but without an obvious downward trend, with the final estimate of the pooled total prevalence of NTD in 2011 similar to that in 1991. Estimates from Poisson models that took registry heterogeneities into account showed an annual increase of 4% (prevalence ratio 1.04, 95% confidence interval 1.01 to 1.07) in 1995-99 and a decrease of 3% per year in 1999-2003 (0.97, 0.95 to 0.99), with stable rates thereafter. The trend patterns for anencephaly and spina bifida were similar, but neither anomaly decreased substantially over time. The live birth prevalence of NTD generally decreased, especially for anencephaly. Registration problems or other data artefacts cannot be excluded as a partial explanation of the observed trends (or lack thereof) in the prevalence of NTD. WHAT THIS STUDY ADDS: In the absence of mandatory fortification, the prevalence of NTD has not decreased in Europe despite longstanding recommendations aimed at promoting peri-conceptional folic acid supplementation and existence of voluntary folic acid fortification. FUNDING, COMPETING INTERESTS, DATA SHARING: The study was funded by the European Public Health Commission, EUROCAT Joint Action 2011-2013. HD and ML received support from the European Commission DG Sanco during the conduct of this study. No additional data available.
Resumo:
The urgent need of effective therapies for methicillin-resistant Staphylococcus aureus (MRSA) infective endocarditis (IE) is a cause of concern. We aimed to ascertain the in vitro and in vivo activity of the older antibiotic fosfomycin combined with different beta-lactams against MRSA and glycopeptide-intermediate-resistant S. aureus (GISA) strains. Time-kill tests with 10 isolates showed that fosfomycin plus imipenem (FOF+IPM) was the most active evaluated combination. In an aortic valve IE model with two strains (MRSA-277H and GISA-ATCC 700788), the following intravenous regimens were compared: fosfomycin (2 g every 8 h [q8h]) plus imipenem (1 g q6h) or ceftriaxone (2 g q12h) (FOF+CRO) and vancomycin at a standard dose (VAN-SD) (1 g q12h) and a high dose (VAN-HD) (1 g q6h). Whereas a significant reduction of MRSA-227H load in the vegetations (veg) was observed with FOF+IPM compared with VAN-SD (0 [interquartile range [IQR], 0 to 1] versus 2 [IQR, 0 to 5.1] log CFU/g veg; P = 0.01), no statistical differences were found with VAN-HD. In addition, FOF+IPM sterilized more vegetations than VAN-SD (11/15 [73%] versus 5/16 [31%]; P = 0.02). The GISA-ATCC 700788 load in the vegetations was significantly lower after FOF+IPM or FOF+CRO treatment than with VAN-SD (2 [IQR, 0 to 2] and 0 [IQR, 0 to 2] versus 6.5 [IQR, 2 to 6.9] log CFU/g veg; P < 0.01). The number of sterilized vegetations after treatment with FOF+CRO was higher than after treatment with VAN-SD or VAN-HD (8/15 [53%] versus 4/20 [20%] or 4/20 [20%]; P = 0.03). To assess the effect of FOF+IPM on penicillin binding protein (PBP) synthesis, molecular studies were performed, with results showing that FOF+IPM treatment significantly decreased PBP1, PBP2 (but not PBP2a), and PBP3 synthesis. These results allow clinicians to consider the use of FOF+IPM or FOF+CRO to treat MRSA or GISA IE.
Resumo:
Mutations of the huntingtin protein (HTT) gene underlie both adult-onset and juvenile forms of Huntington's disease (HD). HTT modulates mitotic spindle orientation and cell fate in mouse cortical progenitors from the ventricular zone. Using human embryonic stem cells (hESC) characterized as carrying mutations associated with adult-onset disease during pre-implantation genetic diagnosis, we investigated the influence of human HTT and of an adult-onset HD mutation on mitotic spindle orientation in human neural stem cells (NSCs) derived from hESCs. The RNAi-mediated silencing of both HTT alleles in neural stem cells derived from hESCs disrupted spindle orientation and led to the mislocalization of dynein, the p150Glued subunit of dynactin and the large nuclear mitotic apparatus (NuMA) protein. We also investigated the effect of the adult-onset HD mutation on the role of HTT during spindle orientation in NSCs derived from HD-hESCs. By combining SNP-targeting allele-specific silencing and gain-of-function approaches, we showed that a 46-glutamine expansion in human HTT was sufficient for a dominant-negative effect on spindle orientation and changes in the distribution within the spindle pole and the cell cortex of dynein, p150Glued and NuMA in neural cells. Thus, neural derivatives of disease-specific human pluripotent stem cells constitute a relevant biological resource for exploring the impact of adult-onset HD mutations of the HTT gene on the division of neural progenitors, with potential applications in HD drug discovery targeting HTT-dynein-p150Glued complex interactions.