158 resultados para 3D user Interfaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional segmented echo planar imaging (3D-EPI) is a promising approach for high-resolution functional magnetic resonance imaging, as it provides an increased signal-to-noise ratio (SNR) at similar temporal resolution to traditional multislice 2D-EPI readouts. Recently, the 3D-EPI technique has become more frequently used and it is important to better understand its implications for fMRI. In this study, the temporal SNR characteristics of 3D-EPI with varying numbers of segments are studied. It is shown that, in humans, the temporal variance increases with the number of segments used to form the EPI acquisition and that for segmented acquisitions, the maximum available temporal SNR is reduced compared to single shot acquisitions. This reduction with increased segmentation is not found in phantom data and thus likely due to physiological processes. When operating in the thermal noise dominated regime, fMRI experiments with a motor task revealed that the 3D variant outperforms the 2D-EPI in terms of temporal SNR and sensitivity to detect activated brain regions. Thus, the theoretical SNR advantage of a segmented 3D-EPI sequence for fMRI only exists in a low SNR situation. However, other advantages of 3D-EPI, such as the application of parallel imaging techniques in two dimensions and the low specific absorption rate requirements, may encourage the use of the 3D-EPI sequence for fMRI in situations with higher SNR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To investigate magnetization transfer (MT) effects as a new source of contrast for imaging and tracking of peripheral foot nerves. MATERIALS AND METHODS: Two sets of 3D spoiled gradient-echo images acquired with and without a saturation pulse were used to generate MT ratio (MTR) maps of 260 μm in-plane resolution for eight volunteers at 3T. Scan parameters were adjusted to minimize signal loss due to T2 dephasing, and a dedicated coil was used to improve the inherently low signal-to-noise ratio of small voxels. Resulting MTR values in foot nerves were compared with those in surrounding muscle tissue. RESULTS: Average MTR values for muscle (45.5 ± 1.4%) and nerve (21.4 ± 3.1%) were significantly different (P < 0.0001). In general, the difference in MTR values was sufficiently large to allow for intensity-based segmentation and tracking of foot nerves in individual subjects. This procedure was termed MT-based 3D visualization. CONCLUSION: The MTR serves as a new source of contrast for imaging of peripheral foot nerves and provides a means for high spatial resolution tracking of these structures. The proposed methodology is directly applicable on standard clinical MR scanners and could be applied to systemic pathologies, such as diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to compare the diagnostic efficiency of plain film and spiral CT examinations with 3D reconstructions of 42 tibial plateau fractures and to assess the accuracy of these two techniques in the pre-operative surgical plan in 22 cases. Forty-two tibial plateau fractures were examined with plain film (anteroposterior, lateral, two obliques) and spiral CT with surface-shaded-display 3D reconstructions. The Swiss AO-ASIF classification system of bone fracture from Muller was used. In 22 cases the surgical plans and the sequence of reconstruction of the fragments were prospectively determined with both techniques, successively, and then correlated with the surgical reports and post-operative plain film. The fractures were underestimated with plain film in 18 of 42 cases (43%). Due to the spiral CT 3D reconstructions, and precise pre-operative information, the surgical plans based on plain film were modified and adjusted in 13 cases among 22 (59%). Spiral CT 3D reconstructions give a better and more accurate demonstration of the tibial plateau fracture and allows a more precise pre-operative surgical plan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperammonemic disorders in pediatric patients lead to poorly understood irreversible effects on the developing brain that may be life-threatening. We showed previously that some of these NH4+-induced irreversible effects might be due to impairment of axonal growth that can be protected under ammonium exposure by creatine co-treatment. The aim of the present work was thus to analyse how the genes of arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), allowing creatine synthesis, as well as of the creatine transporter SLC6A8, allowing creatine uptake into cells, are regulated in rat brain cells under NH4+ exposure. Reaggregated brain cell three-dimensional cultures exposed to NH4Cl were used as an experimental model of hyperammonemia in the developing central nervous system (CNS). We show here that NH4+ exposure differentially alters AGAT, GAMT and SLC6A8 regulation, in terms of both gene expression and protein activity, in a cell type-specific manner. In particular, we demonstrate that NH4+ exposure decreases both creatine and its synthesis intermediate, guanidinoacetate, in brain cells, probably through the inhibition of AGAT enzymatic activity. Our work also suggests that oligodendrocytes are major actors in the brain in terms of creatine synthesis, trafficking and uptake, which might be affected by hyperammonemia. Finally, we show that NH4+ exposure induces SLC6A8 in astrocytes. This suggests that hyperammonemia increases blood-brain barrier permeability for creatine. This is normally limited due to the absence of SLC6A8 from the astrocyte feet lining microcapillary endothelial cells, and thus creatine supplementation may protect the developing CNS of hyperammonemic patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECT: To study a scan protocol for coronary magnetic resonance angiography based on multiple breath-holds featuring 1D motion compensation and to compare the resulting image quality to a navigator-gated free-breathing acquisition. Image reconstruction was performed using L1 regularized iterative SENSE. MATERIALS AND METHODS: The effects of respiratory motion on the Cartesian sampling scheme were minimized by performing data acquisition in multiple breath-holds. During the scan, repetitive readouts through a k-space center were used to detect and correct the respiratory displacement of the heart by exploiting the self-navigation principle in image reconstruction. In vivo experiments were performed in nine healthy volunteers and the resulting image quality was compared to a navigator-gated reference in terms of vessel length and sharpness. RESULTS: Acquisition in breath-hold is an effective method to reduce the scan time by more than 30 % compared to the navigator-gated reference. Although an equivalent mean image quality with respect to the reference was achieved with the proposed method, the 1D motion compensation did not work equally well in all cases. CONCLUSION: In general, the image quality scaled with the robustness of the motion compensation. Nevertheless, the featured setup provides a positive basis for future extension with more advanced motion compensation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HTPSELEX is a public database providing access to primary and derived data from high-throughput SELEX experiments aimed at characterizing the binding specificity of transcription factors. The resource is primarily intended to serve computational biologists interested in building models of transcription factor binding sites from large sets of binding sequences. The guiding principle is to make available all information that is relevant for this purpose. For each experiment, we try to provide accurate information about the protein material used, details of the wet lab protocol, an archive of sequencing trace files, assembled clone sequences (concatemers) and complete sets of in vitro selected protein-binding tags. In addition, we offer in-house derived binding sites models. HTPSELEX also offers reasonably large SELEX libraries obtained with conventional low-throughput protocols. The FTP site contains the trace archives and database flatfiles. The web server offers user-friendly interfaces for viewing individual entries and quality-controlled download of SELEX sequence libraries according to a user-defined sequencing quality threshold. HTPSELEX is available from ftp://ftp.isrec.isb-sib.ch/pub/databases/htpselex/ and http://www.isrec.isb-sib.ch/htpselex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate the impact of navigator timing on image quality in navigator-gated and real-time motion-corrected, free-breathing, three-dimensional (3D) coronary MR angiography (MRA) with submillimeter spatial image resolution. Both phantom and in vivo investigations were performed. 3D coronary MRA with real-time navigator technology was applied using variable navigator time delays (time delay between the navigator and imaging sequences) and varying spatial resolutions. Quantitative objective and subjective image quality parameters were assessed. For high-resolution imaging, reduced image quality was found as a function of increasing navigator time delay. Lower spatial resolution coronary MRA showed only minor sensitivity to navigator timing. These findings were consistent among volunteers and phantom experiments. In conclusion, for submillimeter navigator-gated and real-time motion-corrected 3D coronary MRA, shortening the time delay between the navigator and the imaging portion of the sequence becomes increasingly important for improved spatial resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXECUTIVE SUMMARY This PhD research, funded by the Swiss Sciences Foundation, is principally devoted to enhance the recognition, the visualisation and the characterization of geobodies through innovative 3D seismic approaches. A series of case studies from the Australian North West Shelf ensures the development of reproducible integrated 3D workflows and gives new insight into local and regional stratigraphic as well as structural issues. This project was initiated in year 2000 at the Geology and Palaeontology Institute of the University of Lausanne (Switzerland). Several collaborations ensured the improvement of technical approaches as well as the assessment of geological models. - Investigations into the Timor Sea structural style were carried out at the Tectonics Special Research Centre of the University of Western Australia and in collaboration with Woodside Energy in Perth. - Seismic analysis and attributes classification approach were initiated with Schlumberger Oilfield Australia in Perth; assessments and enhancements of the integrated seismic approaches benefited from collaborations with scientists from Schlumberger Stavanger Research (Norway). Adapting and refining from "linear" exploration techniques, a conceptual "helical" 3D seismic approach has been developed. In order to investigate specific geological issues this approach, integrating seismic attributes and visualisation tools, has been refined and adjusted leading to the development of two specific workflows: - A stratigraphic workflow focused on the recognition of geobodies and the characterization of depositional systems. Additionally, it can support the modelling of the subsidence and incidentally the constraint of the hydrocarbon maturity of a given area. - A structural workflow used to quickly and accurately define major and secondary fault systems. The integration of the 3D structural interpretation results ensures the analysis of the fault networks kinematics which can affect hydrocarbon trapping mechanisms. The application of these integrated workflows brings new insight into two complex settings on the Australian North West Shelf and ensures the definition of astonishing stratigraphic and structural outcomes. The stratigraphic workflow ensures the 3D characterization of the Late Palaeozoic glacial depositional system on the Mermaid Nose (Dampier Subbasin, Northern Carnarvon Basin) that presents similarities with the glacial facies along the Neotethys margin up to Oman (chapter 3.1). A subsidence model reveals the Phanerozoic geodynamic evolution of this area (chapter 3.2) and emphasizes two distinct mode of regional extension for the Palaeozoic (Neotethys opening) and Mesozoic (abyssal plains opening). The structural workflow is used for the definition of the structural evolution of the Laminaria High area (Bonaparte Basin). Following a regional structural characterization of the Timor Sea (chapter 4.1), a thorough analysis of the Mesozoic fault architecture reveals a local rotation of the stress field and the development of reverse structures (flower structures) in extensional setting, that form potential hydrocarbon traps (chapter 4.2). The definition of the complex Neogene structural architecture associated with the fault kinematic analysis and a plate flexure model (chapter 4.3) suggest that the Miocene to Pleistocene reactivation phases recorded at the Laminaria High most probably result from the oblique normal reactivation of the underlying Mesozoic fault planes. This episode is associated with the deformation of the subducting Australian plate. Based on these results three papers were published in international journals and two additional publications will be submitted. Additionally this research led to several communications in international conferences. Although the different workflows presented in this research have been primarily developed and used for the analysis of specific stratigraphic and structural geobodies on the Australian North West Shelf, similar integrated 3D seismic approaches will have applications to hydrocarbon exploration and production phases; for instance increasing the recognition of potential source rocks, secondary migration pathways, additional traps or reservoir breaching mechanisms. The new elements brought by this research further highlight that 3D seismic data contains a tremendous amount of hidden geological information waiting to be revealed and that will undoubtedly bring new insight into depositional systems, structural evolution and geohistory of the areas reputed being explored and constrained and other yet to be constrained. The further development of 3D texture attributes highlighting specific features of the seismic signal, the integration of quantitative analysis for stratigraphic and structural processes, the automation of the interpretation workflow as well as the formal definition of "seismo-morphologic" characteristics of a wide range of geobodies from various environments would represent challenging examples of continuation of this present research. The 21st century will most probably represent a transition period between fossil and other alternative energies. The next generation of seismic interpreters prospecting for hydrocarbon will undoubtedly face new challenges mostly due to the shortage of obvious and easy targets. They will probably have to keep on integrating techniques and geological processes in order to further capitalise the seismic data for new potentials definition. Imagination and creativity will most certainly be among the most important quality required from such geoscientists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-resolution three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings has been developed. Its main characteristics include navigation and shot-triggering software that fires the seismic source at regular distance intervals (max. error of 0.25 m) with real-time control on navigation using differential GPS (Global Positioning System). Receiver positions are accurately calculated (error < 0.20 m) with the aid of GPS antennas attached to the end of each of three 24-channel streamers. Two telescopic booms hold the streamers at a distance of 7.5 m from each other. With a receiver spacing of 2.5 m, the bin dimension is 1.25 m in inline and 3.75 m in crossline direction. To test the system, we conducted a 3D survey of about 1 km(2) in Lake Geneva, Switzerland, over a complex fault zone. A 5-m shot spacing resulted in a nominal fold of 6. A double-chamber bubble-cancelling 15/15 in(3) air gun (40-650 Hz) operated at 80 bars and 1 m depth gave a signal penetration of 300 m below water bottom and a best vertical resolution of 1.1 m. Processing followed a conventional scheme, but had to be adapted to the high sampling rates, and our unconventional navigation data needed conversion to industry standards. The high-quality data enabled us to construct maps of seismic horizons and fault surfaces in three dimensions. The system proves to be well adapted to investigate complex structures by providing non-aliased images of reflectors with dips up to 30 degrees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence to suggest that the presence of mesoscopic heterogeneities constitutes the predominant attenuation mechanism at seismic frequencies. As a consequence, centimeter-scale perturbations of the subsurface physical properties should be taken into account for seismic modeling whenever detailed and accurate responses of the target structures are desired. This is, however, computationally prohibitive since extremely small grid spacings would be necessary. A convenient way to circumvent this problem is to use an upscaling procedure to replace the heterogeneous porous media by equivalent visco-elastic solids. In this work, we solve Biot's equations of motion to perform numerical simulations of seismic wave propagation through porous media containing mesoscopic heterogeneities. We then use an upscaling procedure to replace the heterogeneous poro-elastic regions by homogeneous equivalent visco-elastic solids and repeat the simulations using visco-elastic equations of motion. We find that, despite the equivalent attenuation behavior of the heterogeneous poro-elastic medium and the equivalent visco-elastic solid, the seismograms may differ due to diverging boundary conditions at fluid-solid interfaces, where there exist additional options for the poro-elastic case. In particular, we observe that the seismograms agree for closed-pore boundary conditions, but differ significantly for open-pore boundary conditions. This is an interesting result, which has potentially important implications for wave-equation-based algorithms in exploration geophysics involving fluid-solid interfaces, such as, for example, wave field decomposition.