65 resultados para 1995_12040743 Optics-4
Resumo:
Here we present information on the assignment of 7 genes, ACADVL, ADORA3, ATP7A, MTMR4, MYH2, HBB, TSPAN-3, and 4 common shrew microsatellites to chromosomes of the common shrew (Sorex araneus) and on the current status of its cytogenetic map. Comparative mapping data were used for the analysis of evolutionary chromosomal rearrangements in the common shrew genome.
Resumo:
Fluorescence cystoscopy enhances detection of early bladder cancer. Water used to inflate the bladder during the procedure rapidly contains urine, which may contain fluorochromes. This frequently degradesfluorescence images. Samples of bladder washout fluid (BWF) or urine were collected (15 subjects). We studiedtheir fluorescence properties and assessed changes induced by pH (4 to 9) and temperature (15°C to 41°C).A typical fluorescence spectrum of BWF features a main peak (excitation/emission: 320∕420 nm, FWHM =50∕100 nm) and a weaker (5% to 20% of main peak intensity), secondary peak (excitation/emission: 455∕525 nm, FWHM = 80∕50 nm). Interpatient fluctuations of fluorescence intensity are observed. Fluorescence intensity decreases when temperature increases (max 30%) or pH values vary (max 25%). Neither approach is compatible with clinical settings. Fluorescence lifetime measurements suggest that 4-pyridoxic acid/riboflavin is the most likely molecule responsible for urine's main/secondary fluorescence peak. Our measurements give an insight into the spectroscopy of the detrimental background fluorescence. This should be included in the optical design of fluorescence cystoscopes. We estimate that restricting the excitation range from 370-430 nm to 395-415 nm would reduce the BWF background by a factor 2.
Resumo:
Broad-spectrum inhibitors of HDACs are therapeutic in many inflammatory disease models but exacerbated disease in a mouse model of atherosclerosis. HDAC inhibitors have anti- and proinflammatory effects on macrophages in vitro. We report here that several broad-spectrum HDAC inhibitors, including TSA and SAHA, suppressed the LPS-induced mRNA expression of the proinflammatory mediators Edn-1, Ccl-7/MCP-3, and Il-12p40 but amplified the expression of the proatherogenic factors Cox-2 and Pai-1/serpine1 in primary mouse BMM. Similar effects were also apparent in LPS-stimulated TEPM and HMDM. The pro- and anti-inflammatory effects of TSA were separable over a concentration range, implying that individual HDACs have differential effects on macrophage inflammatory responses. The HDAC1-selective inhibitor, MS-275, retained proinflammatory effects (amplification of LPS-induced expression of Cox-2 and Pai-1 in BMM) but suppressed only some inflammatory responses. In contrast, 17a (a reportedly HDAC6-selective inhibitor) retained anti-inflammatory but not proinflammatory properties. Despite this, HDAC6(-/-) macrophages showed normal LPS-induced expression of HDAC-dependent inflammatory genes, arguing that the anti-inflammatory effects of 17a are not a result of inhibition of HDAC6 alone. Thus, 17a provides a tool to identify individual HDACs with proinflammatory properties.
Resumo:
Aims: To investigate the long-term efficacy and safety of denosumab (DMAb) for the treatment of postmenopausal women with osteoporosis in an open-label extension to the 3-year FREEDOM study.1Methods: All women who completed the FREEDOM study were eligible to enter a long-term open-label extension (up to 10 years). After providing informed consent, participants received 6-monthly subcutaneous injections of DMAb (60 mg). Here we report data from the first year of followup. For women randomized to DMAb in the FREEDOM study ('long-term group'), this represents up to 48 months of DMAb exposure (eight 6-monthly injections). For those randomized to placebo ('de novo group') the data are from up to 12 months of exposure (two injections). All participants continued to take calcium (1 g) and vitamin D (≥400 IU) supplements daily. Changes in bone mineral density (BMD) and bone turnover markers (BTM) are reported for subjects enrolled in the extension. No formal statistical testing was planned for this interim report. P-values are descriptive.Results: Overall, 4,550 eligible women (70.2%) who completed the FREEDOM study entered the open-label extension study (long-term, n=2,343; de novo, n=2,207). During the first year of the extension, lumbar spine (LS) BMD in the long-term group further increased by 2.0% (12.1% increase vs. FREEDOM baseline at 48 months), and total hip (TH) BMD further increased by 0.8% (6.5% increase at 48 months) (p<0.0001 for both BMD gains during year 4; Fig. 1). During the first year of the extension, LS and TH BMD increased by 5.4% and 3.0%, respectively in the de novo group (both p<0.0001). After DMAb initiation, serum C-telopeptide (CTX) in the de novo group decreased rapidly and similarly to the long-term group (Fig. 2). Reductions in BTMs continue to attenuate at the end of the dosing interval as previously reported. Adverse event (AE) rates were similar (70.4% of women in the longterm group and 67.9% in the de novo group). Serious Aes were also similar (9.8% and 11.2% of women, respectively). During year 4, osteoporotic nonvertebral fractures were reported in 31 women in the long-term group and 51 in the denovo group.Fig. 1. Percentage change in BMD with denosumab for4 years (long-term) or 1 year (de novo)Fig. 2. Percentage change in sCTX over timeConclusions: These interim results suggest that continuation of DMAb treatment through 48 months is associated with further significant increases in spine and hip BMD with sustained reduction of bone turnover. The de-novo treatment group results confirm the first year active treatment findings previously reported1.Acknowledgements: Amgen Inc. sponsored this study. Figure ©2010, American Society for Bone and Mineral Research, used by permission, all rights reserved. Disclosure of Interest: H. Bone Grant/Research Support from: Amgen, Eli Lilly, Merck, Nordic Bioscience, Novartis, Takeda Pharmaceuticals, Consultant/Speaker's bureau/ Advisory activities with: Amgen, Merck, Takeda Pharmaceuticals, Zelos, S. Papapoulos Consultant/Speaker's bureau/ Advisory activities with: Amgen, Merck, Novartis, Lilly, Procter and Gamble, GSK, M.-L. Brandi Grant/Research Support from: MSD, GSK, Nycomed, NPS, Amgen, J. Brown Grant/Research Support from: Abbott, Amgen, Bristol Myers Squibb, Eli Lilly, Pfizer, Roche, Consultant/ Speaker's bureau/Advisory activities with: Abbott, Amgen, Eli Lilly, Novartis, Merck, Warner Chilcott,, R. Chapurlat Grant/Research Support from: Servier, Sanofi-Aventis, Warner-Chilcott, Novartis, Merck, Consultant/Speaker's bureau/Advisory activities with: Servier, Novartis, Amgen, E. Czerwinski: None Declared, N. Daizadeh Employee of: Amgen Inc., Stock ownership or royalties of: Amgen Inc., A. Grauer Employee of: Amgen Inc., Stock ownership or royalties of: Amgen Inc., C. Haller Employee of: Amgen Inc., Stock ownership or royalties of: Amgen Inc., M.-A. Krieg: None Declared, C. Libanati Employee of: Amgen Inc., Stock ownership or royalties of: Amgen Inc., Z. Man Grant/Research Support from: Amgen, D. Mellström: None Declared, S. Radominski Grant/Research Support from: Amgen, Pfizer, Roche, BMS, J.-Y. Reginster Grant/Research Support from: Bristol Myers Squibb, Merck Sharp & Dohme, Rottapharm, Teva, Lilly, Novartis, Roche, GlaxoSmithKline, Amgen, Servier, Consultant/Speaker's bureau/ Advisory activities with: Servier, Novartis, Negma, Lilly,Wyeth, Amgen, GlaxoSmithKline, Roche, Merckle, Nycomed, NPS, Theramex, UCB, Merck, Sharpe & Dohme, Rottapharm, IBSA, Genvrier, Teijin, Teva, Ebewee Pharma, Zodiac, Analis, Theramex, Novo-Nordisk, H. Resch: None Declared, J. A. Román Grant/Research Support from: Roche, Pharma, C. Roux Grant/Research Support from: Amgen, MSD, Novartis, Servier, Roche, Consultant/ Speaker's bureau/Advisory activities with: Amgen, MSD, Novartis, Servier, Roche, S. Cummings Grant/ Research Support from: Amgen, Lilly, Consultant/Speaker's bureau/Advisory activities with: Amgen, Lilly, Novartis, Merck