72 resultados para 070301 Agro-ecosystem Function and Prediction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Notch proteins regulate a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal development. Mammals have four Notch receptors that bind five different ligands. The function of Notch signaling during lymphopoiesis and T cell neoplasia, based on gain-of-function and conditional loss-of-function approaches for the Notch1 receptor, indicates Notch1 is essential in T cell lineage commitment. Recent studies have addressed the involvement of other Notch receptors and ligands as well as their downstream targets, demonstrating additional functions of Notch signaling in embryonic hematopoiesis, intrathymic T cell development, B cell development and peripheral T cell function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. SUMMARY Based on functional and homing properties, two subsets of memory T lymphocytes have been defined both in humans and in mice. Central memory T cells (TCM cells) express the lymph node homing receptors CD62L and CCR7, have poor effector function and proliferate efficiently upon antigenic stimulation. Effector memory T cells (TEM cells) do not express CCR7, are mostly CD62L negative and therefore are excluded from lymph nodes, but are able to migrate to sites of inflammation where they exert immediate effector function by producing inflammatory cytokines and cytotoxic mediators. In the present work we have addressed two questions that emerged since the definition of TCM and TEM cells. Firstly, what are the priming conditions for generation of TCM and TEM and, secondly, what is the migratory capacity of TCM and TEM cells in inflammatory conditions. By using naive TCR-transgenic OT-I CD8+ T cells and OT-II CD4+ T cells and ovalbumin pulsed-mature dendritic cells (DCs) we set up an in vitro system in which the strength of T cell stimulation is controlled by varying the ratio of T cells and DCs and the duration of DC-T cell interaction. Using this system we found that precursors of TCM and TEM cells are generated at different strength of stimulation and that T cells capable of persisting in vivo in the absence of antigen and of mounting recall responses is optimally induced by intermediate stimulatory strength. In addition, we found that lymph nodes draining sites of mature DC or adjuvant inoculation recruit CD8+ CD62L- CCR7- effector and TEM cells. CD8+ T cell recruitment in reactive lymph nodes requires CXCR3 expression on T cells and occurs through high endothelial venules (HEVs) in concert with HEV lurninal expression of the CXCR3 ligand CXCL9. In reactive lymph nodes, recruited T cells establish stable interactions with and kill antigen-bearing DCs, limiting the ability of these DCs to activate CD4+ and CD8+ T cells. Taken togther these data define conditions for the generation of TCM and TEM cells and define an inflammatory pathway of effector T cell migration in lymph nodes. The inducible recruitment of blood-borne effector and TEM CD8+ cells to lymph nodes may represent a mechanism for terminating primary and limiting secondary immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural Killer (NK) cells are innate immune cells that can eliminate malignant and foreign cells and that play an important role for the early control of viral and fungal infections. Further, they are important regulators of the adaptive and innate immune responses. During their development in the bone marrow (BM) NK cells undergo several maturation steps that directly establish an effector program. The transcriptional network that controls NK cell development and maturation is still incompletely understood. Based on earlier findings that NK cell numbers are reduced in the absence of the transcription factor T cell factor-1 (Tcf-1), my thesis has addressed the precise role of this transcription factor for NK cell development, maturation and function and whether Tcf-1 acts as a nuclear effector of the canonical Wnt signaling pathway to mediate its effects. It is shown that Tcf-1 is selectively required for the emergence of mature BM NK cells. Surprisingly, the emergence of BM NK cells depends on the repressor function of Tcf-1 and is independent of the Wnt pathway. In BM and peripheral NK cells Tcf-1 is found to suppress Granzyme B (GzmB) expression, a key cytotoxic effector molecule required to kill target cells. We provide evidence that GzmB over-expression in the absence of Tcf-1 results in accelerated spontaneous death of bone marrow NK cells and of cytokine stimulated peripheral NK cells. Moreover, Tcf-1 deficient NK cells show reduced target cell killing, which is due to enhanced GzmB-dependent NK cell death induced by the recognition of tumour target cells. Collectively, these data provide significant new insights into the transcriptional regulation of NK cell development and function and suggest a novel mechanism that protects NK cells from the deleterious effects of highly cytotoxic effector molecules. - Les cellules NK (de l'anglais Natural Killer) font partie du système immunitaire inné et sont capables d'éliminer à elles seules les cellules cancéreuses ou infectées. Ces cellules participent dans la régulation et la coordination des réponses innée et adaptative. Lors de leur développement dans la moelle osseuse, les cellules NK vont acquérir leurs fonctions effectrices, un processus contrôlé par des facteurs de transcription mais encore peu connu. Des précédentes travaux ont montré qu'une diminution du nombre de cellules NK corrélait avec l'absence du facteur de transcription Tcf-1 (T cell factor-1), suggérant un rôle important de Tcf-1 dans le développement de cellules NK. Cette thèse a pour but de mieux comprendre le rôle du facteur de transcription Tcf-1 lors du développement et la maturation des cellules NK, ainsi que son interaction avec la voie de signalisation Wnt. Nous avons montré que Tcf-1 est essentiel pour la transition des cellules immatures NK (iNK) à des cellules matures NK (mNK) dans la moelle osseuse, et cela de manière indépendamment de la voie de signalisation Wnt. De manière intéressante, nous avons observé qu'en absence du facteur de transcription Tcf-1, les cellules NK augmentaient l'expression de la protéine Granzyme B (GzmB), une protéine essentielle pour l'élimination des cellules cancéreuses ou infectées. Ceci a pour conséquence, une augmentation de la mort des cellules mNK dans la moelle osseuse ainsi qu'une diminution de leur fonction «tueuses». Ces résultats montrent pour la première fois, le rôle répresseur du facteur de transcription Tcf-1 dans l'expression de la protéine GzmB. L'ensemble de ces résultats apporte de nouveaux éléments concernant le rôle de Tcf-1 dans la régulation du développement et de la fonction des cellules NK et suggèrent un nouveau mécanisme cellulaire de protection contre les effets délétères d'une dérégulation de l'expression des molécules cytotoxique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies assessing the role of biological diversity for ecosystem functioning indicate that the diversity of functional traits and the evolutionary history of species in a community, not the number of taxonomic units, ultimately drives the biodiversity-ecosystem-function relationship. Here, we simultaneously assessed the importance of plant functional trait and phylogenetic diversity as predictors of major trophic groups of soil biota (abundance and diversity), six years from the onset of a grassland biodiversity experiment. Plant functional and phylogenetic diversity were generally better predictors of soil biota than the traditionally used species or functional group richness. Functional diversity was a reliable predictor for most biota, with the exception of soil microorganisms, which were better predicted by phylogenetic diversity. These results provide empirical support for the idea that the diversity of plant functional traits and the diversity of evolutionary lineages in a community are important for maintaining higher abundances and diversity of soil communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: We preoperatively assessed neurovesical function and spinal cord function in children with anorectal malformations. In cases of neurovesical dysfunction we looked for an association with vertebral malformation or myelodysplasia. MATERIALS AND METHODS: We prospectively evaluated 80 children with anorectal malformations via preoperative urodynamics and magnetic resonance imaging of the spine. Bladder compliance and volume, detrusor activity and vesicosphincteric synergy during voiding allowed urodynamic evaluation. Results were reported according to Wingspread and Krickenbeck classifications of anorectal malformations. RESULTS: Urodynamic findings were pathological in 14 children (18%). Pathological evaluations did not seem related to type of fistula or level of anorectal malformation. Vertebral anomalies were seen in 34 patients (43%) and myelodysplasia in 16 (20%). Neither vertebral anomaly nor myelodysplasia seemed associated with type of fistula or severity of anorectal malformation. Of 14 children with pathological urodynamics no vertebral anomaly or myelodysplasia was found in 7. Of 66 children with normal urodynamics 40 presented with vertebral or spinal malformation. CONCLUSIONS: Lower urinary tract dysfunction is common in patients with anorectal malformations. Normal spine or spinal cord does not exclude neurovesical dysfunction. Myelodysplasia or vertebral anomaly does not determine lower urinary tract dysfunction. Thus, we recommend preoperative urodynamic assessment of the bladder and magnetic resonance imaging of the spine in children with anorectal malformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single amino acid substitution is the type of protein alteration most related to human diseases. Current studies seek primarily to distinguish neutral mutations from harmful ones. Very few methods offer an explanation of the final prediction result in terms of the probable structural or functional effect on the protein. In this study, we describe the use of three novel parameters to identify experimentally-verified critical residues of the TP53 protein (p53). The first two parameters make use of a surface clustering method to calculate the protein surface area of highly conserved regions or regions with high nonlocal atomic interaction energy (ANOLEA) score. These parameters help identify important functional regions on the surface of a protein. The last parameter involves the use of a new method for pseudobinding free-energy estimation to specifically probe the importance of residue side-chains to the stability of protein fold. A decision tree was designed to optimally combine these three parameters. The result was compared to the functional data stored in the International Agency for Research on Cancer (IARC) TP53 mutation database. The final prediction achieved a prediction accuracy of 70% and a Matthews correlation coefficient of 0.45. It also showed a high specificity of 91.8%. Mutations in the 85 correctly identified important residues represented 81.7% of the total mutations recorded in the database. In addition, the method was able to correctly assign a probable functional or structural role to the residues. Such information could be critical for the interpretation and prediction of the effect of missense mutations, as it not only provided the fundamental explanation of the observed effect, but also helped design the most appropriate laboratory experiment to verify the prediction results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Graft right ventricular (RV) function is compromised directly posttransplant, especially in heart transplantation (HTx) recipients with pretransplant pulmonary hypertension (PH). Graft RV size and systolic function, and the effect of the recipient's pulmonary haemodynamics on the graft extracellular matrix are not well characterised in the patients long-term after HTx. Aim: Comparison of RV size and systolic function in HTx recipients' long-term posttransplant stratified by the presence of pretransplant PH. Methods: HTx survivors >/=2 years posttransplant were divided into group I without pretransplant PH (pulmonary vascular resistance, PVR <2.5Wood units, n=37) and group II with PH (PVR >/=2.5Wood units, n=16). RV size and systolic function were measured using cardiac magnetic resonance imaging (CMR). The collagen content was assessed in septal endomyocardial biopsies obtained at HTx and at study inclusion. Results: Mean posttransplant follow-up was 5.2+/-2.9 years (group I) and 4.9+/-2.2 years (group II) (p=0.70). PVR was 1.5+/-0.6 vs 4.1+/-1.7Wood units pretransplant (p<0.001), and 1.2+/-0.5 vs 1.3+/-0.5Wood units at study inclusion (p=0.43). Allograft RV size and systolic function were similar in both groups (p always >/=0.07). Collagen content at transplantation and at follow-up were not different (p always >/=0.60). Conclusion: Posttransplant normalisation of pretransplant PH is associated with normal graft RV function long-term after HTx.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life on earth is rhythmic by essence due to day/night alternation, and many biological processes are also cyclic. The kidney has a special role in the organism, controlling electrolytes and water balance, blood pressure, elimination of metabolic waste and xenobiotics and the production of several hormones. The kidney is submitted to changes throughout 24 h with periods of intense activity followed by calmer periods. Filtration, reabsorption and secretion are the three components determining renal function. Here, we review circadian changes related to glomerular function and proteinuria and emphasize the role of the clock in these processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epithelial sodium channel (ENaC) in the apical membrane of polarized epithelial cells is the rate-limiting step for Na entry into the cell; in series with the basolateral Na pump, it allows the vectorial transepithelial transport of Na ions. ENaC is expressed in different epithelia like the distal nephron or colon, and the airways epithelium. In the lung ENaC controls the composition and the amount of pulmonary fluid, whereas in the distal nephron ENaC under the control of aldosterone and vasopressin, is essential to adapt the amount of Na+ reabsorbed with the daily sodium intake. Activating mutations of ENaC cause severe disturbances of Na+ homeostasis leading to hypertension in human and in mouse models. Functional expression of ENaC in different cell systems allowed the identification of structural domains of the protein that are essential for channel function and/or modulation of channel activity. Site-directed mutations in specific domains of the channel protein lead to channel hyperactivity or channel loss of function. Knowledge about ENaC structure-function relationships opens new opportunities for development of pharmacological tools for controlling ENaC activity, such as channel activators of potential benefit in the treatment of pulmonary edema, or highly potent ENaC blockers with natriuretic effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major task of policy makers and practitioners when confronted with a resource management problem is to decide on the potential solution(s) to adopt from a range of available options. However, this process is unlikely to be successful and cost effective without access to an independently verified and comprehensive available list of options. There is currently burgeoning interest in ecosystem services and quantitative assessments of their importance and value. Recognition of the value of ecosystem services to human well-being represents an increasingly important argument for protecting and restoring the natural environment, alongside the moral and ethical justifications for conservation. As well as understanding the benefits of ecosystem services, it is also important to synthesize the practical interventions that are capable of maintaining and/or enhancing these services. Apart from pest regulation, pollination, and global climate regulation, this type of exercise has attracted relatively little attention. Through a systematic consultation exercise, we identify a candidate list of 296 possible interventions across the main regulating services of air quality regulation, climate regulation, water flow regulation, erosion regulation, water purification and waste treatment, disease regulation, pest regulation, pollination and natural hazard regulation. The range of interventions differs greatly between habitats and services depending upon the ease of manipulation and the level of research intensity. Some interventions have the potential to deliver benefits across a range of regulating services, especially those that reduce soil loss and maintain forest cover. Synthesis and applications: Solution scanning is important for questioning existing knowledge and identifying the range of options available to researchers and practitioners, as well as serving as the necessary basis for assessing cost effectiveness and guiding implementation strategies. We recommend that it become a routine part of decision making in all environmental policy areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regular aerobic exercise training, which is touted as a way to ameliorate metabolic diseases, increases aerobic capacity. Aerobic capacity usually declines with advanced age. The decline in aerobic capacity is typically associated by a decrease in the quality of skeletal muscle. At the molecular level, this decreased quality comes in part from perturbations in skeletal muscle mitochondria. Of particular is a decrease in the total amount of mitochondria that occupy the skeletal muscle volume. What is not well established is if this decrease in mitochondrial content is due to inactive lifestyle or the process of aging. Herein, the work of the thesis shows a clear connection between mitochondrial content and aerobic capacity. This indicates that active individuals with higher VChmax levels also contain higher volumes of mitochondria inside their muscle as opposed to sedentary counterparts who have lower levels of mitochondrial content. Upon taking these previously sedentary individuals and entering them into an aerobic exercise intervention, they are able to recover their mitochondrial content as well as function to similar levels of lifelong athletes of the same age. Furthermore, the results of this thesis show that mitochondrial content and function also correlate with exercise efficiency. If one is more efficient, he/she is able to expend less energy for a similar power output. Furthermore, individuals who increase in efficiency also increase in the ability to oxidize and utilize fat during pro-longed exercise. This increased reliance on fat after the intervention is associated with an increased amount of mitochondria, particularly in the intermyofibrillar region of skeletal muscle. Therefore, elderly adults who were once sedentary were able to recover mitochondrial content and function and are able to reap other health benefits from regular aerobic exercise training. Aging per se does not seem to be the culprit that will lead to metabolic diseases but rather it seems to be a lack of physical activity. -- Un entraînement sportif d'endurance, connu pour réduire le risque de développer des maladies métaboliques, augmente notre capacité aérobie. La capacité aérobie diminue généralement avec l'âge. Ce déclin est typiquement associé d'une diminution de la qualité du muscle squelettique. Au niveau moléculaire, cette diminution est due à des perturbations dans les mitochondries du muscle squelettique,, ce qui conduit à une diminution de la quantité totale des mitochondries présentes dans le muscle squelettique. Il n'a pas encore été établi si cette diminution de la teneur mitochondriale est due à un mode de vie sédentaire ou au processus du vieillissement. Ce travail de thèse montre un lien clair entre le contenu mitochondrial et la capacité aérobie. Il indique que des personnes âgées actives, avec des niveaux de V02max plus élevés, possèdent également un volume plus élevé de mitochondries dans leurs muscles en comparaison à leurs homologues sédentaires. En prenant des individus sédentaires et leur faisant pratiquer une activité physique aérobie, il est possible d'accroître leur contenu de même que leur fonction mitochondriale à des niveaux similaires à ceux d'athlètes du même âge ayant pratiqué une activité physique tout au long de leur vie. De plus, les résultats de ce travail démontrent que le contenu et la fonction mitochondriale sont en corrélation avec l'efficiscience lors d'exercice physique. En agumentant l'effiscience, les personnes sont alors capables de dépenser moins d'énergie pour une puissance d'exercice similaire. Donc, un volume mitochondrial accru dans le muscle squelettique, associé à une fonction mitochondriale améliorée, est associté à une augmentation de l'effiscience. En outre, les personnes qui augmentent leur effiscience, augmentent aussi leur capacité à oxyder les graisses durant l'exercice prolongé. Une augmentation du recours au graisses après l'intervention est associée à une quantité accrue de mitochondries, en particulier dans la région inter-myofibrillaire du muscle squelettique. Par conséquent, les personnes âgées autrefois sédentaires sont en mesure de récupérer leur contenu et leur fonction mitochondriale ainsi que d'autres avantages pour la santé grâce à un entraînement aérobie régulier. Le vieillissement en soi ne semble donc pas être le coupable conduisant aux maladies métaboliques qui semblent plutôt être lié à un manque d'activité physique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoclasts are multinucleated bone degrading cells. Phosphate is an important constituent of mineralized bone and released in significant quantities during bone resorption. Molecular contributors to phosphate transport during the resorptive activity of osteoclasts have been controversially discussed. This study aimed at deciphering the role of sodium-dependent phosphate transporters during osteoclast differentiation and bone resorption. Our studies reveal RANKL-induced differential expression of sodium-dependent phosphate transport protein IIa (NaPi-IIa) transcript and protein during osteoclast development, but no expression of the closely related NaPi-IIb and NaPi-IIc SLC34 family isoforms. In vitro studies employing NaPi-IIa-deficient osteoclast precursors and mature osteoclasts reveal that NaPi-IIa is dispensable for bone resorption and osteoclast differentiation. These results are supported by the analysis of structural bone parameters by high-resolution microcomputed tomography that yielded no differences between adult NaPi-IIa WT and KO mice. By contrast, both type III sodium-dependent phosphate transporters Pit-1 and Pit-2 were abundantly expressed throughout osteoclast differentiation, indicating that they are the relevant sodium-dependent phosphate transporters in osteoclasts and osteoclast precursors. We conclude that phosphate transporters of the SLC34 family have no role in osteoclast differentiation and function and propose that Pit-dependent phosphate transport could be pivotal for bone resorption and should be addressed in further studies.