130 resultados para thermoelastic deformation
Resumo:
Purpose: IOL centration and stability after cataract surgery is of high interest for cataract surgeons and IOL-producing companies. We present a new imaging software to evaluate the centration of the rhexis and the centration of the IOL after cataract surgery.Methods: We developed, in collaboration with the Biomedical Imaging Group (BIG), EPFL, Lausanne, a new working tool in order to assess precisely outcomes after IOL-implantation, such as ideal capsulorhexis and IOL-centration. The software is a plug-in of ImageJ, a general-purpose image processing and image-analysis package. The specifications of this software are: evaluation of the rhexis-centration and evaluation the position of the IOL in the posterior chamber. The end points are to analyze the quality of the centration of a rhexis after cataract surgery, the deformation of the rhexis with capsular bag retraction and the centration of the IOL after implantation.Results: This software delivers tools to interactively measure the distances between limbus, IOL and capsulorhexis and its changes over time. The user is invited to adjust nodes of three radial curves for the limbus, rhexis and the optic of the IOL. The radial distances of the curves are computed to evaluate the IOL implantation. The user is also able to define patterns for ideal capsulorhexis and optimal IOL-centration. We are going to present examples of calculations after cataract surgery.Conclusions: Evaluation of the centration of the rhexis and of the IOL after cataract surgery is an important end point for optimal IOL implantation after cataract surgery. Especially multifocal or accommodative lenses need a precise position in the bag with a good stability over time. This software is able to evaluate these parameters just after the surgery but also its changes over time. The results of these evaluations can lead to an optimizing of surgical procedures and materials.
Resumo:
The Raspas Complex (Ecuador) contains one of the few eclogitic bodies in the northern Andes. It consists of metaperidotites, eclogites, and metapelites. The latter display three assemblages: (i) garnet + chloritoid + kyanite, (ii) garnet + chloritoid and (iii) garnet + chlorite, in all cases with quartz and muscovite in addition. The growth of these assemblages was coeval with the main ductile deformation, and was followed by minor reequilibration (chlorite growth in garnet + chloritoid samples and chloritoid + quartz aggregates replacing garnet and kyanite in garnet + chloritoid + kyanite samples). Detailed microprobe analyses show increasing magnesian compositions for garnet (from core to rim) and chloritoid (inclusions within garnet compared to matrix grains) in kyanite-bearing samples. The above data are interpreted in the framework of the KFMASH system. Reaction progress along the divariant reaction Cld = Grt + Ky explains the change in chemistry of coexisting phases. The divariant Grt-Cld-Ky assemblage has a narrow stability field, and the P-T conditions are estimated at about 20 kbar, 550-600degreesC. Decompression, recorded by chloritoid-quartz pseudomorphs of garnet, probably occurred as temperature decreased.
Resumo:
In the Cape Caribou River allochthon (CCRA), metaigneous and gneissic units occur as a shallowly plunging synform in the hanging wall of the Grand Lake thrust system (GLTS), a Grenvillian structure that forms the boundary between the Mealy Mountains and Groswater Bay terranes. The layered rocks of the CCRA are cut by a stockwork of monzonite dykes related to the Dome Mountain suite and by metadiabase-amphibolite dykes that probably form part of the ca. 1380 Ma Mealy swarm. The mafic dykes appear to postdate much of the development of subhorizontal metamorphic layering within the lower parts of the CCRA. The uppermost (least metamorphosed) units of the CCRA, the North West River anorthosite-metagabbro and the Dome Mountain monzonite suite, have been dated at 1625 +/- 6 and 1626 +/- 2 Ma, respectively. An amphibolite unit that concordantly underlies the anorthosite-metagabbro and is intruded discordantly by monzonite dykes has given metamorphic ages of 1660 +/- 3 and 1631 +/- 2 Ma. Granitoid gneisses that form the lowest level of the CCRA have given a migmatization age of 1622 +/- 6 Ma. The effects of Grenvillian metamorphism become apparent in the lower levels of the allochthon where gneisses, amphibolite, and mafic dykes have given new generation zircon ages of 1008 +/- 2, 1012 +/- 3, and 1011 +/- 3 Ma, respectively. A posttectonic pegmatite has also given zircon and monazite ages of 1016(-3)(+7) and 1013 +/- 3 Ma, respectively. Although these results indicate new growth of Grenvillian zircon, this process was generally not accompanied by penetrative deformation or melting. Thus, the formation of gneissic fabrics and the overall layered nature of the lower CCRA are a result primarily of Labradorian (1660-1620 Ma) tectonism and intrusion, and probably reflect early movement on an ancestral GLTS. Grenvillian heating and metamorphism (up to granulite facies) was strongly concentrated towards the base of the CCRA and probably occurred during northwestward thrusting of the allochthon over the Groswater Bay terrane.
Resumo:
The chemical and isotopic compositions of clay minerals such as illite and chlorite are commonly used to quantify diagenetic and low-grade metamorphic conditions, an approach that is also used in the present study of the Monte Perdido thrust fault from the South Pyrenean fold-and-thrust belt. The Monte Perdido thrust fault is a shallow thrust juxtaposing upper Cretaceous-Paleocene platform carbonates and Lower Eocene marls and turbidites from the Jaca basin. The core zone of the fault, about 6 m thick, consists of intensely deformed clay-bearing rocks bounded by major shear surfaces. Illite and chlorite are the main hydrous minerals in the fault zone. Illite is oriented along cleavage planes while chlorite formed along shear veins (< 50 mu m in thickness). Authigenic chlorite provides essential information about the origin of fluids and their temperature. delta O-18 and delta D values of newly formed chlorite support equilibration with sedimentary interstitial water, directly derived from the local hanging wall and footwall during deformation. Given the absence of large-scale fluid flow, the mineralization observed in the thrust faults records the P-T conditions of thrust activity. Temperatures of chlorite formation of about 240A degrees C are obtained via two independent methods: chlorite compositional thermometers and oxygen isotope fractionation between cogenetic chlorite and quartz. Burial depth conditions of 7 km are determined for the Monte Perdido thrust reactivation, coupling calculated temperature and fluid inclusion isochores. The present study demonstrates that both isotopic and thermodynamic methods applied to clay minerals formed in thrust fault are useful to help constrain diagenetic and low-grade metamorphic conditions.
Resumo:
To constrain deformation temperatures of mantle shear zones, we studied a strike-slip shear zone (Hilti massif, Semail ophiolite, Oman) and focused on the interaction between microstructural mechanisms and chemical equilibration processes. Quantitative microfabric analysis on harzburgites with different deformation intensity (porphyroclastic tectonite, mylonite, and ultramylonite) was combined with orthopyroxene geothermometry. The average grain size of all phases decreases with decreasing shear zone thickness. Dynamic recrystallization of porphyroclasts in combination with dissolution-precipitation and nucleation result in small-sized, chemically equilibrated pyroxenes. The composition of orthopyroxene was used to calculate deformation temperatures. In the case of the porphyroclastic tectonites, the chemical composition of orthopyroxene has been reset by diffusion yielding temperature estimates of 880-900 degrees C. The mylonites were deformed by dislocation creep of olivine and show a broad range of calculated temperatures, which result from a combination of grain size reduction and inheritance of equilibrium compositions from earlier high-temperature events and diffusion. In mylonites, diffusion profiles combined with geothermometry and grain size analysis indicate a mylonitic deformation temperature of 800-900 degrees C possibly followed by diffusion. In ultramylonites, the smallest grains (<30 mu m) reveal equilibration at temperatures of similar to 700 degrees C during the last stages of ductile deformation, which was dominated by diffusion creep of olivine. Our results provide a crucial link between temperature and evolution of microstructures from dislocation creep to diffusion creep in mantle shear zones.
Resumo:
Located at the internal border of the Grand-Saint-Bernard Zone, the diorite and its aureole lie on top of intensively studied Alpine eclogitic units but this pluton, poorly studied yet, has kept locally almost undeformed. The pluton intruded, at similar to 360 Ma, country-rocks mostly composed of dark shales with Na2O > K2O and minor mafic intercalations of tholeiitic basalt affinity. This association is characteristic of the Vanoise (France) basement series, where available age determinations suggest an Early Paleozoic age. Parts of the pluton, and of its hornfels aureole that is evidenced here for the first time, in the Punta Bioula section of Valsavaranche valley (NW-Italy), have been well-preserved from the Alpine deformation. Syn-emplacement hardening, dehydration-induced, probably prevented strain-enhanced Alpine recrystallization. Magmatic rock-types range continuously from subordinate mafic types at SiO2 similar to 48%, of hornblendite with cumulative or appinite affinities, to the main body of quartz diorite to quartz monzonite (SiO2 up to 62%). P-T estimates for the pluton emplacement, based on the abundance of garnet in the hornfelses, using also zircon and apatite saturation thermometry and Al-in-hornblende barometry, suggest T similar to 800-950 degrees C and minimum P in the 0.2-0.5 GPa range, with records of higher pressure conditions (up to 1-2 GPa?) in hornblendite phlogopite-cored amphibole. The high-K, Na > K, calcalkaline geochemistry is in line with a destructive plate-margin setting. Based on major element data and radiogenic isotope signature (epsilon Nd-360 Ma from -1.2 to + 0.9, Sr-87/Sr-86(360 MA) from 0.7054 to 0.7063), the parental magmas are interpreted in terms of deep-seated metabasaltic partial melts with limited contamination from shallower sources, the low radiogenic Nd-content excluding a major contribution from Vanoise tholeiites. There is no other preserved evidence for Variscan magmatism of similar age and composition in the Western Alps, but probable analogs are known in the western and northern parts of French Massif Central. Regarding the Alpine tectonics, not only the age of the pluton and its host-rocks (instead of the Permo-Carboniferous age previously believed), but also its upper mylonitic contact, suggest revisions of the Alpine nappe model. The Cogne diorite allegedly constituted the axial part of the E-verging ``pli en retour [backfold] du Valsavaranche'', a cornerstone of popular Alpine structural models: in fact, the alleged fold limbs, as attested here by field and geochemical data, do not belong to the same unit, and the backfold hypothesis is unfounded. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Extensional detachment systems separate hot footwalls from cool hanging walls, but the degree to which this thermal gradient is the product of ductile or brittle deformation or a preserved original transient geotherm is unclear. Oxygen isotope thermometry using recrystallized quartz-muscovite pairs indicates a smooth thermal gradient (140 degrees C/100 m) across the gently dipping, quartzite-dominated detachment zone that bounds the Raft River core complex in northwest Utah (United States). Hydrogen isotope values of muscovite (delta D-Ms similar to-100 parts per thousand) and fluid inclusions in quartz (delta D-Fluid similar to-85 parts per thousand) indicate the presence of meteoric fluids during detachment dynamics. Recrystallized grain-shape fabrics and quartz c-axis fabric patterns reveal a large component of coaxial strain (pure shear), consistent with thinning of the detachment section. Therefore, the high thermal gradient preserved in the Raft River detachment reflects the transient geotherm that developed owing to shearing, thinning, and the potentially prominent role of convective flow of surface fluids.
Resumo:
We propose a method for brain atlas deformation inpresence of large space-occupying tumors, based on an apriori model of lesion growth that assumes radialexpansion of the lesion from its starting point. First,an affine registration brings the atlas and the patientinto global correspondence. Then, the seeding of asynthetic tumor into the brain atlas provides a templatefor the lesion. Finally, the seeded atlas is deformed,combining a method derived from optical flow principlesand a model of lesion growth (MLG). Results show that themethod can be applied to the automatic segmentation ofstructures and substructures in brains with grossdeformation, with important medical applications inneurosurgery, radiosurgery and radiotherapy.
Resumo:
An active strain formulation for orthotropic constitutive laws arising in cardiac mechanics modeling is introduced and studied. The passive mechanical properties of the tissue are described by the Holzapfel-Ogden relation. In the active strain formulation, the Euler-Lagrange equations for minimizing the total energy are written in terms of active and passive deformation factors, where the active part is assumed to depend, at the cell level, on the electrodynamics and on the specific orientation of the cardiac cells. The well-posedness of the linear system derived from a generic Newton iteration of the original problem is analyzed and different mechanical activation functions are considered. In addition, the active strain formulation is compared with the classical active stress formulation from both numerical and modeling perspectives. Taylor-Hood and MINI finite elements are employed to discretize the mechanical problem. The results of several numerical experiments show that the proposed formulation is mathematically consistent and is able to represent the main key features of the phenomenon, while allowing savings in computational costs.
Resumo:
Postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains are relatively small (80-120 residues) protein binding modules central in the organization of receptor clusters and in the association of cellular proteins. Their main function is to bind C-terminals of selected proteins that are recognized through specific amino acids in their carboxyl end. Binding is associated with a deformation of the PDZ native structure and is responsible for dynamical changes in regions not in direct contact with the target. We investigate how this deformation is related to the harmonic dynamics of the PDZ structure and show that one low-frequency collective normal mode, characterized by the concerted movements of different secondary structures, is involved in the binding process. Our results suggest that even minimal structural changes are responsible for communication between distant regions of the protein, in agreement with recent NMR experiments. Thus, PDZ domains are a very clear example of how collective normal modes are able to characterize the relation between function and dynamics of proteins, and to provide indications on the precursors of binding/unbinding events.
Resumo:
The application of the Fry method to measure strain in deformed porphyritic granites is discussed. This method requires that the distribution of markers has to satisfy at least two conditions. It has to be homogeneous and isotropic. Statistics on point distribution with the help of a Morishita diagram can easily test homogeneity. Isotropy can be checked with a cumulative histogram of angles between points. Application of these tests to undeformed (Mte Capanne granite, Elba) and to deformed (Randa orthogneiss, Alps of Switzerland) porphyritic granite reveals that their K-feldspars phenocrysts both satisfy these conditions and can be used as strain markers with the Fry method. Other problems are also examined. One is the possible distribution of deformation on discrete shear-bands. Providing several tests are met, we conclude that the Fry method can be used to estimate strain in deformed porphyritic granites. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Résumé Scientific:Pétrologie et Géochimie du Complexe Plutonique de Chaltén et les conséquences pour l'évolution magmatique et tectonique du Andes du Sud (Patagonia) pendant le MiocèneLe sujet de cette thèse est le Complexe Plutonique de Chaltén (CHPC), situé à la frontière entre le Chili et l'Argentine, en Patagonie (49°15'S). Ce complexe s'est mis en place au début du Miocène, dans un contexte de changements tectoniques importants. La géométrie et la vitesse de migration des plaques en Patagonie a été modifiée suite l'ouverture de la plaque Farallon il y a 25Ma (Pardo-Casas and Molnar 1987) et la subduction de la ride active du Chili sous la plaque sud-américaine il y a 14Ma (Cande and Leslie 1986). Les effets de cette reconfiguration tectonique sur la morphologie et le magmatisme de la plaque supérieure sont encore sujets à discussion. Dans ce contexte, un groupe d'intrusions miocènes - telle que le CHPC - est particulièrement intriguant, car en position transitionnelle entre le batholithe patagonien et l'arc volcanique cénozoïque et récent à l'ouest, et les laves de plateau de Patagonie à l'est (Fig. 1). A cause de leur position tectonique transitoire, ces plutons isolés hors du batholithe représentent un endroit clé pour comprendre les interactions entre la tectonique à large échelle et le magmatisme en Patagonie. Ici, je présente de nouvelles données de terrain, petrologiques, géochimiques et géochronologiques dans le but de caractériser la nature du CHPC, qui était largement inconnu avant cette étude, dans le but de tester l'hypothèse de migration de l'arc et erosion par subduction.Les résultats de l'investigation géochimique (chapitre 2) montrent que le CHPC n'est qu'un exemple parmi les plutons isolés d'arrière arc ave une composition calco-alcaline caractéristique, c-à-d une signature d'arc. La plupart de ces plutons isolés ont une composition alcaline. Le CHPC, contrairement, a une signature calco-alcaline avec Κ intermédiaire, tel que le batholithe patagonien et la plupart des roches volcaniques quaternaires liées à l'arc le long des Andes.De nouvelles données géochronologiques U-Pb de haute précision sur des zircons, acquis par TIMS, sur le CHPC donnent des âges entre 17.0 et 16.4Ma. Les âges absolus sont en accord avec la séquence intrusive déduite des relations de terrain (chapitre 1). Ces données sont les premières contraintes d'âge U-Pb sur le CHPC. Elles montrent clairement que l'histoire magmatique du CHPC n'a pas de lien direct avec la subduction de la ride à cette latitude (Cande and Leslie 1986), car le complexe est au moins 6Ma plus ancien.Une comparaison en profondeur avec les autres intrusions d'âge Miocène en Patagonie révèlent - pour la première fois - une évolution temporelle intéressante. Il y a une tendance E-W distincte au magmatisme calco-alcalin entre 20-16Ma avec une diminution de l'âge vers l'est - le CHPC est l'expression la plus orientale de cette tendance. Je suggère que la relation espace-temps reflète une migration vers l'est (vers le continent) de l'arc magmatique. Je propose que le facteur principal contrôlant cette migration est la subduction rapide suite à la reconfiguration de la vitesse des plaques tectoniques après l'ouverture la plaque Farallon (à ~26Ma) qui résulterait en une déformation importante ainsi qu'à des taux élevés d'érosion dans la fosse de subduction.Les rapports d'isotopes radiogéniques (Pb, Sr, Nd) élevés, une signature 6018 basse et un rapport Th/La élevé sont des paramètres distinctifs pour les roches mafiques du CHPC. Le modèle isotopique présenté (chapitre 2) suggère que cette signature reflète une contamination de la source, dans le coin de manteau, plutôt qu'une contamination crustale. La signature des éléments en trace du CHPC indiquent que le coin de manteau a été contaminé par des composés terrigènes, le plus vraisemblablement par des sédiments paléozoïques.Les travaux de terrain, la pétrographie et la géothermobarométrie ont été utilisés dans le but de comprendre l'histoire interne du CHPC (chapitre 3). Ces données suggèrent deux niveaux distincts de cristallisation : l'un dans la croûte moyenne (6 à 4.5kbar) et l'autre à un niveau peu profond (3.5 à 2kbar). La modélisation isotopique AFC de la contamination crustale indique des taux variables d'assimilation, qui ne sont pas corrélés avec le degré de différenciation. Cela suggère que différents volumes de magma se sont différenciés en profondeur, de façon indépendante. Cela implique que le CHPC se serait formés en plusieurs puises de magmas provenant d'au moins trois sources différentes. Les textures des granodiorites et des granites indiquent des teneurs élevées en cristaux avant la mise en place et, par conséquent, des températures d'emplacement faibles. Les observations de terrain montrent que les roches mafiques sont déformées, alors que ce n'est pas le cas pour les granodiorites et granites (plus jeunes). La déformation des roches mafiques est encore sujet de recherche, afin de savoir si elle est liée à la déformation régionale en régime compressif ou à l'emplacement lui-même. Cependant, la mise en place de grand volume de magma felsique riche en cristaux suggère un régime d'extension.Scientific Abstract:Petrology and chemistry of the Chaltén Plutonic Complex and implications on the magmatic and tectonic evolution of the Southernmost Andes (Patagonia) during the MioceneThe subject of this thesis is the Chaltén Plutonic Complex (CHPC) located at the frontier between Chile and Argentina in Patagonia (at 49° 15 'Southern latitude). This complex intruded during early Miocene in a context of major tectonics changes. The plate geometry of Patagonia has been modified by changes in the plate motions after the break up of the Farallôn plate at 25Ma (Pardo-Casas and Molnar 1987) and by the subduction of the Chile spreading Ridge beneath South-America at 14 Ma (Cande and Leslie 1986). The effects of this tectonic setting on the morphology and the magmatism of the overriding plate are a matter of on-going discussion. Particularly intriguing in this context is a group of isolated Miocene intrusions - like the CHPC - which are located in a transitional position between the Patagonian Batholith and the Cenozoic and Recent volcanic arc in the West, and the Patagonian plateau lavas in the East (Fig. 1). Due to their transient tectonic position these isolated plutons outside the batholith represent a key to understanding the interaction between global-scale tectonics and magmatism in Patagonia. Here, I present new field, penological, geochemical and geochronological data to characterize the nature of the CHPC, which was largely unknown before this study, in order to test the hypothesis of time- transgressive magmatism.The results of the geochemical investigation (Chapter 2) show that the CHPC is only one among these isolated back-arc plutons with a characteristic calc-alkaline composition, i.e. arc signature. Most of these isolated intrusives have an alkaline character. The CHPC, in contrast, has a medium Κ calc-alkaline signature, like the Patagonian batholith and most of the Quaternary arc-related volcanic rocks along the Andes.New high precision TIMS U-Pb zircon dating of the CHPC yield ages between 17.0 to 16.4 Ma. The absolute ages support the sequence of intrusion relations established in the field (Chapter 1). These data are the first U-Pb age constraints on the CHPC, and clearly show that the magmatic history of CHPC has no direct link to the subduction of the ridge, since this complex is at least 6 Ma older than the time of collision of the Chile ridge at this latitude (Cande and Leslie 1986).An in-depth comparison with other intrusion of Miocene age in Patagonia reveals - for the first time - an interesting temporal pattern. There is a distinct E-W trend of calc-alkaline magmatism between 20-16 Ma with the younging of ages in the East - the CHPC is the easternmost expression of this trend. I suggest that this time-space relation reflects an eastward (landward) migration of the magmatic arc. I propose that main factor controlling this migration is the fast rates of subduction after the major reconfigurations of the plate tectonic motions after the break up of the Farallôn Plate (at -26 ) resulting in strong deformation and high rates of subduction erosion.High radiogenic isotope ratios (Pb, Sr, Nd) ratios, low 5018 signature and high Th/La ratios in mafic rocks are distinctive features of the CHPC. The presented isotopic models (Chapter 2) suggest that this signature reflects source contamination of the mantle wedge rather than crustal contamination. The trace element signature of the CHPC indicates that the mantle wedge was contaminated with a terrigenous component, most likely from Paleozoic sediments.Fieldwork, petrography and geothermobarometry were used to further unravel the internal history of the CHPC (Chapter 3). These data suggest two main levels of crystallization: one a mid crustal levels (6 to 4.5 kbar) and other a shallow level (3.5 to 2 kbar). Isotopic AFC modeling of crustal contamination indicate variable rates of assimilation, which are not correlated with the degree of differentiation. This suggests that different batches of magma differentiate independently at depths. This implies that the CHPC would have formed by several pulses of magmas from at least 3 different sources. Textures of granodiorites and granites indicate a high content of crystals previous to the emplacement and consequently low emplacement temperatures. Field observations show that the mafic rocks are deformed, whereas the (younger) granodiorites and granites are not. It is still subject of investigation whether the deformation of the mafic rocks is related to regional deformation during a compressional regime or to the emplacement it self. However, the emplacement of huge amount of crystal rich felsic magmas suggests an extensional regime.Résumé Grand PublicPétrologie et Géochimie du Complexe Plutonique de Chaltén et les conséquences pour l'évolution magmatique et tectonique du Andes du Sud (Patagonia) pendant le MiocèneLe Complexe Plutonique de Chaltén (CHPC) est un massif montagneux situé à 49°S à la frontière entre le Chili et l'Argentine, en Patagonie (région la plus au sud de l'Amérique du Sud). Il est composé de montagnes qui peuvent atteindre plus de 3000 mètres d'altitude, telles que le Cerro Fitz Roy (3400m) et le Cerro Torre (3100m). Ces montagnes sont composées de roches plutoniques, c.-à-d. des magmas qui se sont refroidis et ont cristallisés sous la surface terrestre.La composition chimique de ces roches montre que les magmas, qui ont formé ce complexe plutonique, font partie d'un volcanisme d'arc. Celui-ci se forme lorsqu'une plaque océanique plonge sous une plaque continentale. Les géologues appellent ce processus « subduction ». Dans un tel scénario, le manteau terrestre, qui se fait prendre entre ces deux plaques, fond pour former ainsi du magma. Ce magma remonte à travers la plaque continentale vers la surface. Si celui-ci atteint la surface, il forme les roches volcaniques, comme par exemple des laves. S'il n'atteint pas la surface, le magma se refroidit pour former finalement les roches plutoniques.Le long de la marge ouest d'Amérique du Sud, la plaque Nazca - qui se situe au sud-est de la plaque océanique pacifique - passe en dessous de la plaque d'Amérique du Sud. La bordure ouest du sud de la plaque sud-américaine a également été affectée par d'autres processus tectoniques, tels que des changements dramatiques dans les déplacements de plaques (il y a 25Ma) et la collision de la ride du Chili (depuis 15 Ma jusqu'à aujourd'hui). Ces caractéristiques tectoniques et magmatiques font de cette région un haut lieu pour les géologues. La plaque Nazca, s'est formée suite à l'ouverture d'une plaque océanique plus ancienne, il y a 25Ma. Cette ouverture est liée aux vitesses de subduction les plus rapides jamais connues. La ride du Chili est l'endroit où le sol de l'Océan Pacifique s'ouvre, formant deux plaques océaniques : les plaques Nazca et Antarctique. La ride du Chili subducte sous la plaque sud-américaine depuis 15Ma, en association avec la formation de grands volumes de magma ainsi que des changements morphologiques importants. La question de savoir lequel de ces changements tectoniques globaux affecte la géologie et la géographie de Patagonie a été, et est encore, discutée pendant de nombreuses années. De nombreux chercheurs suggèrent que la plupart des caractéristiques morphologiques et magmatiques en Patagonie sont liés à la subduction de la ride du Chili, mais cette suggestion est encore débattue comme le montre notre étude.Le batholithe de Patagonie du sud (SPB) est un énorme massif composé de roches plutoniques et il s'étend tout au long de la côte ouest de Patagonie (au sud de 47°S). Ces roches correspondent certainement aux racines d'un ancien arc volcanique, qui a été soulevé et érodé. Le CHPC, ainsi que d'autres petites intrusions dans la région, se situe dans une position exotique, à 100km à l'est du SPB. Certains chercheurs suggèrent que ces intrusions pourraient être liées à la subduction de la ride du Chili.Afin de débattre de cette problématique, nous avons utilisé différentes méthodes géochronologiques pour déterminer l'âge du CHPC et le comparer (a) à l'âge des roches intrusives similaires du SPB et (b) à l'âge de la collision de la ride du Chili. Dans ce travail, nous prouvons que le CHPC s'est formé au moins 7Ma avant la collision avec la ride du Chili. Sur la base des âges du CHPC et de la composition chimique de ses roches et minéraux, nous proposons que le CHPC fait partie d'un arc volcanique ancien. La migration de l'arc volcanique plus profondément dans le continent résulte de la grande vitesse de subduction entre 25 et lOMa. Des caractéristiques évidentes pour un tel processus - telles qu'une déformation importante et une vitesse d'érosion élevée - peuvent être rencontrées tout au long de la bordure ouest de l'Amérique du sud.
Resumo:
This study analyses the stratigraphy, structure and kinematics of the northern part of the Adula nappe of the Central Alps. The Adula nappe is one of the highest basement nappes in the Lower Penninic nappe stack of the Lepontine Dome. This structural position makes possible the investigation of the transition between the Helvetic and North Penninic paleogeographic domains. The Adula nappe is principally composed of crystalline basement rocks. The investigation of the pre-Triassic basement shows that it contains several Palaeozoic detrital metasedimentary formations dated from the Cambrian to the Ordovician. These formations contain also some volcanic or intrusive magmatic rocks. Ordovician metagranites dated at ~450 Ma are also a common rock-type of the Adula basement. These formations underwent Alpine and Variscan deformation and metamorphism. Permian granites (Zervreila orthogneiss, dated at ~290 Ma) have intruded this pre-structured basement in a post-orogenic geodynamic context. Due to their age, the Zervreila orthogneiss are good markers for alpine deformation. The stratigraphy of the Mesozoic and Paleogene sedimentary cover of the Adula nappe is essential to unraveling its pre- orogenic history. The autochthonous cover is assigned to a North Penninic Triassic series that testifies for a transition between the Helvetic and Briançonnais Triassic domains. The Adula domain goes through an emersion during the Middle Jurassic, and is part of a topographic high during the first phase of the Alpine rift. The sediments of the late Middle Jurassic show a drowning phase associated with a tectonic activity and a breccia formation. In the neighbouring domains, coeval with the drowning phase in the Adula domain, a strong extensional crustal delamination and a scattered magmatic activity is associated with the main opening of the North Penninic domain. The Upper Jurassic of the Adula nappe is characterized by a carbonate formation comparable with those in the Helvetic or Subbriaçonnais domains. Flysch s.l. deposition starts probably at the end of the Cretaceous. These sediments are deposited on a large unconformity testifying for a Cretaceous sedimentary gap. The Adula nappe exhibits a very complex structure. This structure is formed by several deformation phases. Two ductile deformations are responsible for the nappe emplacement. The first deformation phase is associated with a folding compatible with a top-to-south movement at the top of the nappe. The second phase is dominant and pervasive throughout the whole nappe. It goes with a strong north vergent folding and the main nappe emplacement. These two phases cause the exhumation and emplacement of a coherent, although pre-structured, piece of continental crust. Two further deformation phases postdate the nappe emplacement. - Ce travail concerne l'étude géologique de la partie nord de la nappe de l'Adula dans les Alpes centrales. La nappe de l'Adula est l'une des nappes cristallines la plus élevée dans la pile des nappes du Pennique inférieur des Alpes lepontines. Cette position particulière permet d'étudier la transition entre les nappes des domaines helvétique et pennique inférieur. La nappe de l'Adula est principalement composée de socle cristallin : l'étude de l'histoire géologique du socle est donc l'un des thèmes de cette recherche. Ce socle contient plusieurs formations métasédimentaires paléozoïques du Cambrien à I'Ordovicien. Ces métasédiments sont issus de formations clastiques comprenant souvent des roches magmatiques volcaniques et intrusives. Ces métasédiments ont subi les cycles orogéniques varisque et alpin. La nappe de l'Adula contient plusieurs corps magmatiques granitiques métamorphisés. Les premiers métagranites sont Ordovicien et témoignent d'un environnement de marge active. Ces granites sont aussi polymétamorphiques. Les deuxièmes métagranites sont représentés par les orthogneiss de type Zervreila. Ce métagranite est d'âge permien (-290 Ma). Il est mis en place dans un contexte tectonique post-orogénique. Ce granite est un maqueur de la déformation alpine car il n'est pas affecté par les orogenèses précédentes, flippy Le contenu stratigraphique des roches mésozoïques et cénozoiques de la couverture sédimentaire de la nappe de l'Adula est'important pour en étudier son histoire pré-alpine. La couverture autochtone est composée d'une série d'âge triasique d'affinité nord-pennique, un faciès qui marque la transition entre les domaines helvétiques et briançonnais au Trias. Le domaine paléogéographique représenté dans la nappe de l'Adula connaît une émersion pendant le Jurassique moyen. Cette émersion marque le commencement du rift dans le domaine alpin. La sédimentation de la fin du Jurassique moyen est marquée par une transgression marine accompagnée par des mouvements tectoniques et la formation d'une brèche. Cette transgression est contemporaine des importants mouvements tectoniques et des manifestations magmatiques dans les unités voisines qui marquent la phase principale d'ouverture du bassin nord-pennique. Le Jurassique supérieur est caractérisé par l'instauration d'une sédimentation carbonatée comparable à celle du domaine helvétique ou subbriançonnais. Une sédimentation flyschoïde, probablement du Crétacé à Tertiaire, est déposée sur une importante discordance qui témoigne d'une lacune au Crétacé. La structure complexe de la nappe de l'Adula témoigne de nombreuses phases de déformation. Ces phases de déformation sont en partie issues de la mise en place de la nappe et de déformations plus tardives. La mise en place de la nappe produit deux phases de déformation ductile : la première produit un plissement compatible avec un cisaillement top-vers-le sud dans la partie supérieure de la nappe; la deuxième produit un intense plissement qui accompagne la mise en place de la nappe vers le nord. Ces deux phases de déformation témoignent d'un mécanisme d'exhumation par déformation ductile d'un bloc cohérent.
Resumo:
The diagnosis of muscular dystrophies or the assessment of the functional benefit of gene or cell therapies can be difficult, especially for poorly accessible muscles, and it often lacks a singlefiber resolution. In the present study, we evaluated whether muscle diseases can be diagnosed from small biopsies using atomic force microscopy (AFM). AFM was shown to provide a sensitive and quantitative description of the resistance of normal and dystrophic myofibers within live muscle tissues explanted from Duchenne mdx mice. The rescue of dystrophin expression by gene therapy approaches led to the functional recovery of treated dystrophic muscle fibers, as probed using AFM and by in situ wholemuscle strength measurements. Comparison of muscles treated with viral or non-viral vectors indicated that the efficacy of the gene transfer approaches could be distinguished with a single myofiber resolution. This indicated full correction of the resistance to deformation in nearly all of the muscle fibers treated with an adeno-associated viral vector that mediates exon-skipping on the dystrophin mRNA. Having shown that AFM can provide a quantitative assessment of the expression of muscle proteins and of the muscular function in animal models, we assessed myofiber resistance in the context of human muscular dystrophies and myopathies. Thus, various forms of human Becker syndrome can also be detected using AFM in blind studies of small frozen biopsies from human patients. Interestingly, it also allowed the detection of anomalies in a fraction of the muscle fibers from patients showing a muscle weakness that could not be attributed to a known molecular or genetic defect. Overall, we conclude that AFM may provide a useful method to complement current diagnosis tools of known and unknown muscular diseases, in research and in a clinical context.
Resumo:
The transpressional boundary between the Australian and Pacific plates in the central South Island of New Zealand comprises the Alpine Fault and a broad region of distributed strain concentrated in the Southern Alps but encompassing regions further to the east, including the northwest Canterbury Plains. Low to moderate levels of seismicity (e. g., 2 > M 5 events since 1974 and 2 > M 4.0 in 2009) and Holocene sediments offset or disrupted along rare exposed active fault segments are evidence for ongoing tectonism in the northwest plains, the surface topography of which is remarkably flat and even. Because the geology underlying the late Quaternary alluvial fan deposits that carpet most of the plains is not established, the detailed tectonic evolution of this region and the potential for larger earthquakes is only poorly understood. To address these issues, we have processed and interpreted high-resolution (2.5 m subsurface sampling interval) seismic data acquired along lines strategically located relative to extensive rock exposures to the north, west, and southwest and rare exposures to the east. Geological information provided by these rock exposures offer important constraints on the interpretation of the seismic data. The processed seismic reflection sections image a variably thick layer of generally undisturbed younger (i.e., < 24 ka) Quaternary alluvial sediments unconformably overlying an older (> 59 ka) Quaternary sedimentary sequence that shows evidence of moderate faulting and folding during and subsequent to deposition. These Quaternary units are in unconformable contact with Late Cretaceous-Tertiary interbedded sedimentary and volcanic rocks that are highly faulted, folded, and tilted. The lowest imaged unit is largely reflection-free Permian Triassic basement rocks. Quaternary-age deformation has affected all the rocks underlying the younger alluvial sediments, and there is evidence for ongoing deformation. Eight primary and numerous secondary faults as well as a major anticlinal fold are revealed on the seismic sections. Folded sedimentary and volcanic units are observed in the hanging walls and footwalls of most faults. Five of the primary faults represent plausible extensions of mapped faults, three of which are active. The major anticlinal fold is the probable continuation of known active structure. A magnitude 7.1 earthquake occurred on 4 September 2010 near the southeastern edge of our study area. This predominantly right-lateral strike-slip event and numerous aftershocks (ten with magnitudes >= 5 within one week of the main event) highlight the primary message of our paper: that the generally flat and topographically featureless Canterbury Plains is underlain by a network of active faults that have the potential to generate significant earthquakes.