52 resultados para thermal regimes
Resumo:
In order to better understand the specificity of training adaptations, we compared the effects of two different anaerobic training regimes on various types of soccer-related exercise performances. During the last 3 weeks of the competitive season, thirteen young male professional soccer players (age 18.5±1 yr, height 179.5±6.5 cm, body mass 74.3±6.5 kg) reduced the training volume by ~20% and replaced their habitual fitness conditioning work with either speed endurance production (SEP; n = 6) or speed endurance maintenance (SEM; n = 7) training, three times per wk. SEP training consisted of 6-8 reps of 20-s all-out running bouts followed by 2 min of passive recovery, whereas SEM training was characterized by 6-8 x 20-s all-out efforts interspersed with 40 s of passive recovery. SEP training reduced (p<0.01) the total time in a repeated sprint ability test (RSAt) by 2.5%. SEM training improved the 200-m sprint performance (from 26.59±0.70 to 26.02±0.62 s, p<0.01) and had a likely beneficial impact on the percentage decrement score of the RSA test (from 4.07±1.28 to 3.55±1.01%) but induced a very likely impairment in RSAt (from 83.81±2.37 to 84.65±2.27 s). The distance covered in the Yo-Yo Intermittent Recovery test level 2 was 10.1% (p<0.001) and 3.8% (p<0.05) higher after SEP and SEM training, respectively, with possibly greater improvements following SEP compared to SEM. No differences were observed in the 20- and 40-m sprint performances. In conclusion, these two training strategies target different determinants of soccer-related physical performance. SEP improved repeated sprint and high-intensity intermittent exercise performance, whereas SEM increased muscles' ability to maximize fatigue tolerance and maintain speed development during both repeated all-out and continuous short-duration maximal exercises. These results provide new insight into the precise nature of a stimulus necessary to improve specific types of athletic performance in trained young soccer players.
Resumo:
Thermal processes are widely used in small molecule chemical analysis and metabolomics for derivatization, vaporization, chromatography, and ionization, especially in gas chromatography mass spectrometry (GC/MS). In this study the effect of heating was examined on a set of 64 small molecule standards and, separately, on human plasma metabolite extracts. The samples, either derivatized or underivatized, were heated at three different temperatures (60, 100, and 250 °C) at different exposure times (30 s, 60 s, and 300 s). All the samples were analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS) and the data processed by XCMS Online ( xcmsonline.scripps.edu ). The results showed that heating at an elevated temperature of 100 °C had an appreciable effect on both the underivatized and derivatized molecules, and heating at 250 °C created substantial changes in the profile. For example, over 40% of the molecular peaks were altered in the plasma metabolite analysis after heating (250 °C, 300s) with a significant formation of degradation and transformation products. The analysis of 64 small molecule standards validated the temperature-induced changes observed on the plasma metabolites, where most of the small molecules degraded at elevated temperatures even after minimal exposure times (30 s). For example, tri- and diorganophosphates (e.g., adenosine triphosphate and adenosine diphosphate) were readily degraded into a mono-organophosphate (e.g., adenosine monophosphate) during heating. Nucleosides and nucleotides (e.g., inosine and inosine monophosphate) were also found to be transformed into purine derivatives (e.g., hypoxanthine). A newly formed transformation product, oleoyl ethyl amide, was identified in both the underivatized and derivatized forms of the plasma extracts and small molecule standard mixture, and was likely generated from oleic acid. Overall these analyses show that small molecules and metabolites undergo significant time-sensitive alterations when exposed to elevated temperatures, especially those conditions that mimic sample preparation and analysis in GC/MS experiments.