201 resultados para temporal decomposition overlapping segment quantization
Resumo:
Patients with Temporal Lobe Epilepsy (TLE) suffer from widespread subtle white matter abnormalities and abnormal functional connectivity extending beyond the affected lobe, as revealed by Diffusion Tensor MR Imaging, volumetric and functional MRI studies. Diffusion Spectrum Imaging (DSI) is a diffusion imaging technique with high angular resolution for improving the mapping of white matter pathways. In this study, we used DSI, connectivity matrices and topological measures to investigate how the alteration in structural connectivity influences whole brain structural networks. Eleven patients with right-sided TLE and hippocampal sclerosis and 18 controls underwent our DSI protocol at 3T. The cortical and subcortical grey matters were parcellated into 86 regions of interest and the connectivity between every region pair was estimated using global tractography and a connectivity matrix (the adjacency matrix of the structural network). We then compared the networks of patients and controls using topological measures. In patients, we found a higher characteristic path length and a lower clustering coefficient compared to controls. Local measures at node level of the clustering and efficiency showed a significant difference after a multiple comparison correction (Bonferroni). These significant nodes were located within as well outside the temporal lobe, and the localisation of most of them was consistent with regions known to be part of epileptic networks in TLE. Our results show altered connectivity patterns that are concordant with the mapping of functional epileptic networks in patients with TLE. Further studies are needed to establish the relevance of these findings for the propagation of epileptic activity, cognitive deficits in medial TLE and outcome of epilepsy surgery in individual patients.
Resumo:
The ciliary body and iris are pigmented epithelial structures in the anterior eye segment that function to maintain correct intra-ocular pressure and regulate exposure of the internal eye structures to light, respectively. The cellular and molecular factors that mediate the development of the ciliary body and iris from the ocular pigmented epithelium remain to be fully elucidated. Here, we have investigated the role of Notch signaling during the development of the anterior pigmented epithelium by using genetic loss- and gain-of-function approaches. Loss of canonical Notch signaling results in normal iris development but absence of the ciliary body. This causes progressive hypotony and over time leads to phthisis bulbi, a condition characterized by shrinkage of the eye and loss of structure/function. Conversely, Notch gain-of-function results in aniridia and profound ciliary body hyperplasia, which causes ocular hypertension and glaucoma-like disease. Collectively, these data indicate that Notch signaling promotes ciliary body development at the expense of iris formation and reveals novel animal models of human ocular pathologies.
Resumo:
Objectif : Etudier les résultats cliniques du traitement de patients atteints pai- une épilepsie mésiale du lobe temporal (MTLE) réfractaire, par stimulation cérébrale profonde (DBS) de l'hippocampe, en fonction de l'emplacement de l'électrode. Méthodes : Huit patients atteints de MTLE implantés dans l'hippocampe et stimulés par DBS à haute fréquence ont été inclus dans cette étude. Cinq ont subi des enregistrements invasifs avec des électrodes profondes dans le but d'estimer la localisation du foyer ictal avant de procéder à une DBS chronique. La position des contacts actifs de l'électrode a été mesurée en utilisant une imagerie post-opératoire. Les distances par rapport au foyer ictal ont été calculées, et les structures hippocampiques influencées par la stimulation ont été identifiées au moyen d'un atlas neuro-anatomique. Ces deux paramètres ont été corrélés avec la réduction de la fréquence d'apparition des crises. Résultats : Les distances entre la localisation estimée des contacts actifs de l'électrode et le foyer ictal étaient respectivement 11.0 +/- 4.3 ou 9.1 +/- 2.3 mm pour les patients présentant une réduction de > 50% ou < 50% de la fréquence des crises. Chez les patients (N = 6) montrant une réduction de > 50% de la fréquence des crises, 100% avaient des contacts actifs situés à < 3 mm du subiculum (p < 0,05). Les 2 patients ne répondant pas au traitement étaient stimulés par des contacts situés à > 3mm du subiculum. Conclusion : La diminution de l'activité épileptogène induite par DBS sur l'hippocampe dans les cas de MTLE réfractaires : 1) ne semble pas directement liée à la proximité des contacts actifs de l'électrode au foyer ictal déterminé par les enregistrements invasifs ; 2) pourrait être obtenue par une neuro-modulation du subiculum.
Resumo:
Optimisation of reproductive investment is crucial for Darwinian fitness, and detailed long-term studies are especially suited to unravel reproductive allocation strategies. Allocation strategies depend on the timing of resource acquisition, the timing of resource allocation, and trade-offs between different life-history traits. A distinction can be made between capital breeders that fuel reproduction with stored resources and income breeders that use recently acquired resources. In capital breeders, but not in income breeders, energy allocation may be decoupled from energy acquisition. Here, we tested the influence of extrinsic (weather conditions) and intrinsic (female characteristics) factors during energy storage, vitellogenesis and early gestation on reproductive investment, including litter mass, litter size, offspring mass and the litter size and offspring mass trade-off. We used data from a long-term study of the viviparous lizard, Lacerta (Zootoca) vivipara. In terms of extrinsic factors, rainfall during vitellogenesis was positively correlated with litter size and mass, but temperature did not affect reproductive investment. With respect to intrinsic factors, litter size and mass were positively correlated with current body size and postpartum body condition of the previous year, but negatively with parturition date of the previous year. Offspring mass was negatively correlated with litter size, and the strength of this trade-off decreased with the degree of individual variation in resource acquisition, which confirms theoretical predictions. The combined effects of past intrinsic factors and current weather conditions suggest that common lizards combine both recently acquired and stored resources to fuel reproduction. The effect of past energy store points out a trade-off between current and future reproduction.
Resumo:
Forest fire sequences can be modelled as a stochastic point process where events are characterized by their spatial locations and occurrence in time. Cluster analysis permits the detection of the space/time pattern distribution of forest fires. These analyses are useful to assist fire-managers in identifying risk areas, implementing preventive measures and conducting strategies for an efficient distribution of the firefighting resources. This paper aims to identify hot spots in forest fire sequences by means of the space-time scan statistics permutation model (STSSP) and a geographical information system (GIS) for data and results visualization. The scan statistical methodology uses a scanning window, which moves across space and time, detecting local excesses of events in specific areas over a certain period of time. Finally, the statistical significance of each cluster is evaluated through Monte Carlo hypothesis testing. The case study is the forest fires registered by the Forest Service in Canton Ticino (Switzerland) from 1969 to 2008. This dataset consists of geo-referenced single events including the location of the ignition points and additional information. The data were aggregated into three sub-periods (considering important preventive legal dispositions) and two main ignition-causes (lightning and anthropogenic causes). Results revealed that forest fire events in Ticino are mainly clustered in the southern region where most of the population is settled. Our analysis uncovered local hot spots arising from extemporaneous arson activities. Results regarding the naturally-caused fires (lightning fires) disclosed two clusters detected in the northern mountainous area.
Resumo:
GTPases of the Rab1 subclass are essential for membrane traffic between the endoplasmic reticulum (ER) and Golgi complex in animals, fungi and plants. Rab1-related proteins in higher plants are unusual because sequence comparisons divide them into two putative subclasses, Rab-D1 and Rab-D2, that are conserved in monocots and dicots. We tested the hypothesis that the Rab-D1 and Rab-D2 proteins of Arabidopsis represent functionally distinct groups. RAB-D1 and RAB-D2a each targeted fluorescent proteins to the same punctate structures associated with the Golgi stacks and trans-Golgi-network. Dominant-inhibitory N121I mutants of each protein inhibited traffic of diverse cargo proteins at the ER but they appeared to act via distinct biochemical pathways as biosynthetic traffic in cells expressing either of the N121I mutants could be restored by coexpressing the wild-type form of the same subclass but not the other subclass. The same interaction was observed in transgenic seedlings expressing RAB-D1 [N121I]. Insertional mutants confirmed that the three Arabidopsis Rab-D2 genes were extensively redundant and collectively performed an essential function that could not be provided by RAB-D1, which was non-essential. However, plants lacking RAB-D1, RAB-D2b and RAB-D2c were short and bushy with low fertility, indicating that the Rab-D1 and Rab-D2 subclasses have overlapping functions.
Resumo:
Probably the most natural energy functional to be considered for knotted strings is that given by electrostatic repulsion. In the absence of counter-charges, a charged, knotted string evolving along the energy gradient of electrostatic repulsion would progressively tighten its knotted domain into a point on a perfectly circular string. However, in the presence of charge screening self-repelling knotted strings can be stabilized. It is known that energy functionals in which repulsive forces between repelling charges grow inversely proportionally to the third or higher power of their relative distance stabilize self-repelling knots. Especially interesting is the case of the third power since the repulsive energy becomes scale invariant and does not change upon Mobius transformations (reflections in spheres) of knotted trajectories. We observe here that knots minimizing their repulsive Mobius energy show quantization of the energy and writhe (measure of chirality) within several tested families of knots.
Resumo:
Introduction: Discrimination of species-specific vocalizations is fundamental for survival and social interactions. Its unique behavioral relevance has encouraged the identification of circumscribed brain regions exhibiting selective responses (Belin et al., 2004), while the role of network dynamics has received less attention. Those studies that have examined the brain dynamics of vocalization discrimination leave unresolved the timing and the inter-relationship between general categorization, attention, and speech-related processes (Levy et al., 2001, 2003; Charest et al., 2009). Given these discrepancies and the presence of several confounding factors, electrical neuroimaging analyses were applied to auditory evoked-potential (AEPs) to acoustically and psychophysically controlled non-verbal human and animal vocalizations. This revealed which region(s) exhibit voice-sensitive responses and in which sequence. Methods: Subjects (N=10) performed a living vs. man-made 'oddball' auditory discrimination task, such that on a given block of trials 'target' stimuli occurred 10% of the time. Stimuli were complex, meaningful sounds of 500ms duration. There were 120 different sound files in total, 60 of which represented sounds of living objects and 60 man-made objects. The stimuli that were the focus of the present investigation were restricted to those of living objects within blocks where no response was required. These stimuli were further sorted between human non-verbal vocalizations and animal vocalizations. They were also controlled in terms of their spectrograms and formant distributions. Continuous 64-channel EEG was acquired through Neuroscan Synamps referenced to the nose, band-pass filtered 0.05-200Hz, and digitized at 1000Hz. Peri-stimulus epochs of continuous EEG (-100ms to 900ms) were visually inspected for artifacts, 40Hz low-passed filtered and baseline corrected using the pre-stimulus period . Averages were computed from each subject separately. AEPs in response to animal and human vocalizations were analyzed with respect to differences of Global Field Power (GFP) and with respect to changes of the voltage configurations at the scalp (reviewed in Murray et al., 2008). The former provides a measure of the strength of the electric field irrespective of topographic differences; the latter identifies changes in spatial configurations of the underlying sources independently of the response strength. In addition, we utilized the local auto-regressive average distributed linear inverse solution (LAURA; Grave de Peralta Menendez et al., 2001) to visualize and statistically contrast the likely underlying sources of effects identified in the preceding analysis steps. Results: We found differential activity in response to human vocalizations over three periods in the post-stimulus interval, and this response was always stronger than that to animal vocalizations. The first differential response (169-219ms) was a consequence of a modulation in strength of a common brain network localized into the right superior temporal sulcus (STS; Brodmann's Area (BA) 22) and extending into the superior temporal gyrus (STG; BA 41). A second difference (291-357ms) also followed from strength modulations of a common network with statistical differences localized to the left inferior precentral and prefrontal gyrus (BA 6/45). These two first strength modulations correlated (Spearman's rho(8)=0.770; p=0.009) indicative of functional coupling between temporally segregated stages of vocalization discrimination. A third difference (389-667ms) followed from strength and topographic modulations and was localized to the left superior frontal gyrus (BA10) although this third difference did not reach our spatial criterion of 12 continuous voxels. Conclusions: We show that voice discrimination unfolds over multiple temporal stages, involving a wide network of brain regions. The initial stages of vocalization discrimination are based on modulations in response strength within a common brain network with no evidence for a voice-selective module. The latency of this effect parallels that of face discrimination (Bentin et al., 2007), supporting the possibility that voice and face processes can mutually inform one another. Putative underlying sources (localized in the right STS; BA 22) are consistent with prior hemodynamic imaging evidence in humans (Belin et al., 2004). Our effect over the 291-357ms post-stimulus period overlaps the 'voice-specific-response' reported by Levy et al. (Levy et al., 2001) and the estimated underlying sources (left BA6/45) were in agreement with previous findings in humans (Fecteau et al., 2005). These results challenge the idea that circumscribed and selective areas subserve con-specific vocalization processing.
Resumo:
PURPOSE: This study investigates the effects of triamcinolone acetonide (TA) on retinal endothelial cells in vitro and explores the potential vascular toxic effect of TA injected into the vitreous cavity of rats in vivo. METHODS: Subconfluent endothelial cells were treated with either 0.1 mg/ml or 1 mg/ml TA in 1% ethanol. Control cells were either untreated or exposed to 1% ethanol. Cell viability was evaluated at 24 h, 72 h, and five days using the tetrazolium 3-(4,5-dimethylthiazol-2-yl)-2,5 phenyltetrazolium bromide test (MTT) and lactate dehydrogenase (LDH) assays. Cell proliferation was evaluated by 5-bromo-2-deoxyuridine (BrdU) test. Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay (TUNEL assay), annexin-binding, and caspase 3 activation. Caspase-independent cell deaths were investigated by immunohistochemistry using antibodies against apoptosis inducing factor (AIF), cytochrome C, microtubule-associated protein (MAP)-light chain 3 (MAP-LC3), and Leukocyte Elastase Inhibitor/Leukocyte Elastase Inhibitor-derived DNase II (LEI/L-DNase II). In vivo, semithin and ultrathin structure analysis and vascular casts were performed to examine TA-induced changes of the choroidal vasculature. In addition, outer segments phagocytosis assay on primary retinal pigment epithelium (RPE) cells was performed to assess cyclooxygenase (COX-2) and vascular endothelial growth factor (VEGF) mRNAs upregulation with or without TA. RESULTS: The inhibitory effect of TA on cell proliferation could not explain the significant reduction in cell viability. Indeed, TA induced a time-dependent reduction of bovine retinal endothelial cells viability. Annexin-binding positive cells were observed. Cytochrome C was not released from mitochondria. L-DNase II was found translocated to the nucleus, meaning that LEI was changed into L-DNase II. AIF was found nuclearized in some cells. LC3 labeling showed the absence of autophagic vesicles. No autophagy or caspase dependent apoptosis was identified. At 1 mg/ml TA induced necrosis while exposure to lower concentrations for 3 to 5 days induced caspase independent apoptosis involving AIF and LEI/L-DNase II. In vivo, semithin and ultrathin structure analysis and vascular casts revealed that TA mostly affected the choroidal vasculature with a reduction of choroidal thickness and increased the avascular areas of the choriocapillaries. Experiments performed on primary RPE cells showed that TA downregulates the basal expression of COX-2 and VEGF and inhibits the outer segments (OS)-dependent COX-2 induction but not the OS-dependent VEGF induction. CONCLUSIONS: This study demonstrates for the first time that glucocorticoids exert direct toxic effect on endothelial cells through caspase-independent cell death mechanisms. The choroidal changes observed after TA intravitreous injection may have important implications regarding the safety profile of TA use in human eyes.
Resumo:
The joint angles of multi-segment foot models have been primarily described using two mathematical methods: the joint coordinate system and the attitude vector. This study aimed to determine whether the angles obtained through these two descriptors are comparable, and whether these descriptors have similar sensitivity to experimental errors. Six subjects walked eight times on an instrumented walkway while the joint angles among shank, hindfoot, medial forefoot, and lateral forefoot were measured. The angles obtained using both descriptors and their sensitivity to experimental errors were compared. There was no overall significant difference between the ranges of motion obtained using both descriptors. However, median differences of more than 6° were noticed for the medial-lateral forefoot joint. For all joints and rotation planes, both descriptors provided highly similar angle patterns (median correlation coefficient: R>0.90), except for the medial-lateral forefoot angle in the transverse plane (median R=0.77). The joint coordinate system was significantly more sensitive to anatomical landmarks misplacement errors. However, the absolute differences of sensitivity were small relative to the joints ranges of motion. In conclusion, the angles obtained using these two descriptors were not identical, but were similar for at least the shank-hindfoot and hindfoot-medial forefoot joints. Therefore, the angle comparison across descriptors is possible for these two joints. Comparison should be done more carefully for the medial-lateral forefoot joint. Moreover, despite different sensitivities to experimental errors, the effects of the experimental errors on the angles were small for both descriptors suggesting that both descriptors can be considered for multi-segment foot models.