54 resultados para task-determined visual strategy
Resumo:
Multisensory memory traces established via single-trial exposures can impact subsequent visual object recognition. This impact appears to depend on the meaningfulness of the initial multisensory pairing, implying that multisensory exposures establish distinct object representations that are accessible during later unisensory processing. Multisensory contexts may be particularly effective in influencing auditory discrimination, given the purportedly inferior recognition memory in this sensory modality. The possibility of this generalization and the equivalence of effects when memory discrimination was being performed in the visual vs. auditory modality were at the focus of this study. First, we demonstrate that visual object discrimination is affected by the context of prior multisensory encounters, replicating and extending previous findings by controlling for the probability of multisensory contexts during initial as well as repeated object presentations. Second, we provide the first evidence that single-trial multisensory memories impact subsequent auditory object discrimination. Auditory object discrimination was enhanced when initial presentations entailed semantically congruent multisensory pairs and was impaired after semantically incongruent multisensory encounters, compared to sounds that had been encountered only in a unisensory manner. Third, the impact of single-trial multisensory memories upon unisensory object discrimination was greater when the task was performed in the auditory vs. visual modality. Fourth, there was no evidence for correlation between effects of past multisensory experiences on visual and auditory processing, suggestive of largely independent object processing mechanisms between modalities. We discuss these findings in terms of the conceptual short term memory (CSTM) model and predictive coding. Our results suggest differential recruitment and modulation of conceptual memory networks according to the sensory task at hand.
Resumo:
After incidentally learning about a hidden regularity, participants can either continue to solve the task as instructed or, alternatively, apply a shortcut. Past research suggests that the amount of conflict implied by adopting a shortcut seems to bias the decision for vs. against continuing instruction-coherent task processing. We explored whether this decision might transfer from one incidental learning task to the next. Theories that conceptualize strategy change in incidental learning as a learning-plus-decision phenomenon suggest that high demands to adhere to instruction-coherent task processing in Task 1 will impede shortcut usage in Task 2, whereas low control demands will foster it. We sequentially applied two established incidental learning tasks differing in stimuli, responses and hidden regularity (the alphabet verification task followed by the serial reaction task, SRT). While some participants experienced a complete redundancy in the task material of the alphabet verification task (low demands to adhere to instructions), for others the redundancy was only partial. Thus, shortcut application would have led to errors (high demands to follow instructions). The low control demand condition showed the strongest usage of the fixed and repeating sequence of responses in the SRT. The transfer results are in line with the learning-plus-decision view of strategy change in incidental learning, rather than with resource theories of self-control.
Resumo:
NlmCategory="UNASSIGNED">This Perspective discusses the pertinence of variable dosing regimens with anti-vascular endothelial growth factor (VEGF) for neovascular age-related macular degeneration (nAMD) with regard to real-life requirements. After the initial pivotal trials of anti-VEGF therapy, the variable dosing regimens pro re nata (PRN), Treat-and-Extend, and Observe-and-Plan, a recently introduced regimen, aimed to optimize the anti-VEGF treatment strategy for nAMD. The PRN regimen showed good visual results but requires monthly monitoring visits and can therefore be difficult to implement. Moreover, application of the PRN regimen revealed inferior results in real-life circumstances due to problems with resource allocation. The Treat-and-Extend regimen uses an interval based approach and has become widely accepted for its ease of preplanning and the reduced number of office visits required. The parallel development of the Observe-and-Plan regimen demonstrated that the future need for retreatment (interval) could be reliably predicted. Studies investigating the observe-and-plan regimen also showed that this could be used in individualized fixed treatment plans, allowing for dramatically reduced clinical burden and good outcomes, thus meeting the real life requirements. This progressive development of variable dosing regimens is a response to the real-life circumstances of limited human, technical, and financial resources. This includes an individualized treatment approach, optimization of the number of retreatments, a minimal number of monitoring visits, and ease of planning ahead. The Observe-and-Plan regimen achieves this goal with good functional results. Translational Relevance: This perspective reviews the process from the pivotal clinical trials to the development of treatment regimens which are adjusted to real life requirements. The article discusses this translational process which- although not the classical interpretation of translation from fundamental to clinical research, but a subsequent process after the pivotal clinical trials - represents an important translational step from the clinical proof of efficacy to optimization in terms of patients' and clinics' needs. The related scientific procedure includes the exploration of the concept, evaluation of security, and finally proof of efficacy.
Resumo:
PURPOSE: Laparoscopic surgery represents specific challenges, such as the reduction of a three-dimensional anatomic environment to two dimensions. The aim of this study was to investigate the impact of the loss of the third dimension on laparoscopic virtual reality (VR) performance. METHODS: We compared a group of examinees with impaired stereopsis (group 1, n = 28) to a group with accurate stereopsis (group 2, n = 29). The primary outcome was the difference between the mean total score (MTS) of all tasks taken together and the performance in task 3 (eye-hand coordination), which was a priori considered to be the most dependent on intact stereopsis. RESULTS: The MTS and performance in task 3 tended to be slightly, but not significantly, better in group 2 than in group 1 [MTS: -0.12 (95 % CI -0.32, 0.08; p = 0.234); task 3: -0.09 (95 % CI -0.29, 0.11; p = 0.385)]. The difference of MTS between simulated impaired stereopsis between group 2 (by attaching an eye patch on the adominant eye in the 2nd run) and the first run of group 1 was not significant (MTS: p = 0.981; task 3: p = 0.527). CONCLUSION: We were unable to demonstrate an impact of impaired examinees' stereopsis on laparoscopic VR performance. Individuals with accurate stereopsis seem to be able to compensate for the loss of the third dimension in laparoscopic VR simulations.
Resumo:
How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.
Resumo:
PURPOSE: Signal detection on 3D medical images depends on many factors, such as foveal and peripheral vision, the type of signal, and background complexity, and the speed at which the frames are displayed. In this paper, the authors focus on the speed with which radiologists and naïve observers search through medical images. Prior to the study, the authors asked the radiologists to estimate the speed at which they scrolled through CT sets. They gave a subjective estimate of 5 frames per second (fps). The aim of this paper is to measure and analyze the speed with which humans scroll through image stacks, showing a method to visually display the behavior of observers as the search is made as well as measuring the accuracy of the decisions. This information will be useful in the development of model observers, mathematical algorithms that can be used to evaluate diagnostic imaging systems. METHODS: The authors performed a series of 3D 4-alternative forced-choice lung nodule detection tasks on volumetric stacks of chest CT images iteratively reconstructed in lung algorithm. The strategy used by three radiologists and three naïve observers was assessed using an eye-tracker in order to establish where their gaze was fixed during the experiment and to verify that when a decision was made, a correct answer was not due only to chance. In a first set of experiments, the observers were restricted to read the images at three fixed speeds of image scrolling and were allowed to see each alternative once. In the second set of experiments, the subjects were allowed to scroll through the image stacks at will with no time or gaze limits. In both static-speed and free-scrolling conditions, the four image stacks were displayed simultaneously. All trials were shown at two different image contrasts. RESULTS: The authors were able to determine a histogram of scrolling speeds in frames per second. The scrolling speed of the naïve observers and the radiologists at the moment the signal was detected was measured at 25-30 fps. For the task chosen, the performance of the observers was not affected by the contrast or experience of the observer. However, the naïve observers exhibited a different pattern of scrolling than the radiologists, which included a tendency toward higher number of direction changes and number of slices viewed. CONCLUSIONS: The authors have determined a distribution of speeds for volumetric detection tasks. The speed at detection was higher than that subjectively estimated by the radiologists before the experiment. The speed information that was measured will be useful in the development of 3D model observers, especially anthropomorphic model observers which try to mimic human behavior.
Resumo:
Previous research has shown that power increases focus on the main goal when distractor information is present. As a result, high-power people have been described as goal-focused. In real life, one typically wants to pursue multiple goals at the same time. There is a lack of research on how power affects how people deal with situations in which multiple important goals are present. To address this question, 158 participants were primed with high or low power or assigned to a control condition, and were asked to perform a dual-goal task with three difficulty levels. We hypothesized and found that high-power primed people prioritize when confronted with a multiple-goal situation. More specifically, when task demands were relatively low, power had no effect; participants generally pursued multiple goals in parallel. However, when task demands were high, the participants in the high-power condition focused on a single goal whereas participants in the low-power condition continued using a dualtask strategy. This study extends existing power theories and research in the domain of goal pursuit.
Resumo:
Here we adopt a novel strategy to investigate phonological assembly. Participants performed a visual lexical decision task in English in which the letters in words and letterstrings were delivered either sequentially (promoting phonological assembly) or simultaneously (not promoting phonological assembly). A region of interest analysis confirmed that regions previously associated with phonological assembly, in studies contrasting different word types (e.g. words versus pseudowords), were also identified using our novel task that controls for a number of confounding variables. Specifically, the left pars opercularis, the superior part of the ventral precentral gyrus and the supramarginal gyrus were all recruited more during sequential delivery than simultaneous delivery, even when various psycholinguistic characteristics of the stimuli were controlled. This suggests that sequential delivery of orthographic stimuli is a useful tool to explore how readers, with various levels of proficiency, use sublexical phonological processing during visual word recognition.
Resumo:
The brain integrates multiple sensory inputs, including somatosensory and visual inputs, to produce a representation of the body. Spinal cord injury (SCI) interrupts the communication between brain and body and the effects of this deafferentation on body representation are poorly understood. We investigated whether the relative weight of somatosensory and visual frames of reference for body representation is altered in individuals with incomplete or complete SCI (affecting lower limbs' somatosensation), with respect to controls. To study the influence of afferent somatosensory information on body representation, participants verbally judged the laterality of rotated images of feet, hands, and whole-bodies (mental rotation task) in two different postures (participants' body parts were hidden from view). We found that (i) complete SCI disrupts the influence of postural changes on the representation of the deafferented body parts (feet, but not hands) and (ii) regardless of posture, whole-body representation progressively deteriorates proportionally to SCI completeness. These results demonstrate that the cortical representation of the body is dynamic, responsive, and adaptable to contingent conditions, in that the role of somatosensation is altered and partially compensated with a change in the relative weight of somatosensory versus visual bodily representations.