243 resultados para reportable segment
Resumo:
PURPOSE: To define the phenotypic manifestation, confirm the genetic basis, and delineate the pathogenic mechanisms underlying an oculoauricular syndrome (OAS). METHODS: Two individuals from a consanguineous family underwent comprehensive clinical phenotyping and electrodiagnostic testing (EDT). Genome-wide microarray analysis and Sanger sequencing of the candidate gene were used to identify the likely causal variant. Protein modelling, Western blotting, and dual luciferase assays were used to assess the pathogenic effect of the variant in vitro. RESULTS: Complex developmental ocular abnormalities of congenital cataract, anterior segment dysgenesis, iris coloboma, early-onset retinal dystrophy, and abnormal external ear cartilage presented in the affected family members. Genetic analyses identified a homozygous c.650A>C; p.(Gln217Pro) missense mutation within the highly conserved homeodomain of the H6 family homeobox 1 (HMX1) gene. Protein modelling predicts that the variant may have a detrimental effect on protein folding and/or stability. In vitro analyses were able to demonstrate that the mutation has no effect on protein expression but adversely alters function. CONCLUSIONS: Oculoauricular syndrome is an autosomal recessive condition that has a profound effect on the development of the external ear, anterior segment, and retina, leading to significant visual loss at an early age. This study has delineated the phenotype and confirmed HMX1 as the gene causative of OAS, enabling the description of only the second family with the condition. HMX1 is a key player in ocular development, possibly in both the pathway responsible for lens and retina development, and via the gene network integral to optic fissure closure.
Resumo:
T lymphocytes reactive with the product of the Mlsa-allele of the minor lymphocyte stimulating (Mls) locus use a predominant T-cell receptor beta-chain variable gene segment (V beta 6). Such V beta 6-bearing T cells are selectively eliminated in the thymus of Mlsa-bearing mice, consistent with a model in which tolerance to self antigens is achieved by clonal deletion.
Resumo:
HLA-A2+ melanoma patients develop naturally a strong CD8+ T cell response to a self-peptide derived from Melan-A. Here, we have used HLA-A2/peptide tetramers to isolate Melan-A-specific T cells from tumor-infiltrated lymph nodes of two HLA-A2+ melanoma patients and analyzed their TCR beta chain V segment and complementarity determining region 3 length and sequence. We found a broad diversity in Melan-A-specific immune T-cell receptor (TCR) repertoires in terms of both TCR beta chain variable gene segment usage and clonal composition. In addition, immune TCR repertoires selected in the patients were not overlapping. In contrast to previously characterized CD8+ T-cell responses to viral infections, this study provides evidence against usage of highly restricted TCR repertoire in the natural response to a self-differentiation tumor antigen.
Resumo:
The tubular transport of [3H]methotrexate was studied in isolated nonperfused and perfused superficial proximal tubular segments of rabbit kidneys. Reabsorption represented only 5% of perfused methotrexate, and appeared to be mostly of passive nature inasmuch as it was not modified by reducing the temperature or by ouabain. Cellular accumulation in nonperfused segments and secretion in perfused tubules were highest in the S2 segment and lower in the S3 and S1 segments. Secretion against a bath-to-lumen concentration gradient was observed only in S2 segments (with a maximum methotrexate secretory rate of 478 +/- 48 fmol/mm.min and an apparent Km of transport of 363 +/- 32 microM), and was inhibited by probenecid and folate. The low capacity for methotrexate secretion may be explained by a low capacity of transport across the basolateral membrane of the proximal cell as methotrexate was accumulated only to a low extent in nonperfused tubules (tissue water to medium concentration ratio of 8.2 +/- 1 in S2 segments). During secretion a small amount of methotrexate was metabolized; the nature of the metabolite(s) remains to be defined.
Resumo:
Stress, molecular crowding and mutations may jeopardize the native folding of proteins. Misfolded and aggregated proteins not only loose their biological activity, but may also disturb protein homeostasis, damage membranes and induce apoptosis. Here, we review the role of molecular chaperones as a network of cellular defenses against the formation of cytotoxic protein aggregates. Chaperones favour the native folding of proteins either as "holdases", sequestering hydrophobic regions in misfolding polypeptides, and/or as "unfoldases", forcibly unfolding and disentangling misfolded polypeptides from aggregates. Whereas in bacteria, plants and fungi Hsp70/40 acts in concert with the Hsp100 (ClpB) unfoldase, Hsp70/40 is the only known chaperone in the cytoplasm of mammalian cells that can forcibly unfold and neutralize cytotoxic protein conformers. Owing to its particular spatial configuration, the bulky 70 kDa Hsp70 molecule, when distally bound through a very tight molecular clamp onto a 50-fold smaller hydrophobic peptide loop extruding from an aggregate, can locally exert on the misfolded segment an unfolding force of entropic origin, thus destroying the misfolded structures that stabilize aggregates. ADP/ATP exchange triggers Hsp70 dissociation from the ensuing enlarged unfolded peptide loop, which is then allowed to spontaneously refold into a closer-to-native conformation devoid of affinity for the chaperone. Driven by ATP, the cooperative action of Hsp70 and its co-chaperone Hsp40 may thus gradually convert toxic misfolded protein substrates with high affinity for the chaperone, into non-toxic, natively refolded, low-affinity products. Stress- and mutation-induced protein damages in the cell, causing degenerative diseases and aging, may thus be effectively counteracted by a powerful network of molecular chaperones and of chaperone-related proteases.
Resumo:
A collaborative exercise was carried out by the European DNA Profiling Group (EDNAP) in order to evaluate the distribution of mitochondrial DNA (mtDNA) heteroplasmy amongst the hairs of an individual who displays point heteroplasmy in blood and buccal cells. A second aim of the exercise was to study reproducibility of mtDNA sequencing of hairs between laboratories using differing chemistries, further to the first mtDNA reproducibility study carried out by the EDNAP group. Laboratories were asked to type 2 sections from each of 10 hairs, such that each hair was typed by at least two laboratories. Ten laboratories participated in the study, and a total of 55 hairs were typed. The results showed that the C/T point heteroplasmy observed in blood and buccal cells at position 16234 segregated differentially between hairs, such that some hairs showed only C, others only T and the remainder, C/T heteroplasmy at varying ratios. Additionally, differential segregation of heteroplasmic variants was confirmed in independent extracts at positions 16093 and the poly(C) tract at 302-309, whilst a complete A-G transition was confirmed at position 16129 in one hair. Heteroplasmy was observed at position 16195 on both strands of a single extract from one hair segment, but was not observed in the extracts from any other segment of the same hair. Similarly, heteroplasmy at position 16304 was observed on both strands of a single extract from one hair. Additional variants at positions 73, 249 and the HVII poly(C) region were reported by one laboratory; as these were not confirmed in independent extracts, the possibility of contamination cannot be excluded. Additionally, the electrophoresis and detection equipment used by this laboratory was different to those of the other laboratories, and the discrepancies at position 249 and the HVII poly(C) region appear to be due to reading errors that may be associated with this technology. The results, and their implications for forensic mtDNA typing, are discussed in the light of the biology of hair formation.
Resumo:
As a cause of small intestine occlusion, volvulus is often a consequence of a band or adhesions. Except in infants, it is rarely the primary cause of symptomatology. Between January 1976 and December 1992, 13 patients (7 women and 6 men, mean age of 56.8 years) were admitted in our department for an acute abdomen due to a spontaneous primary volvulus of the small bowel. Clinical examination and laboratory tests did not help in preoperative diagnosis. All patients underwent an explorative laparotomy. Six patients had had prior abdominal surgery but none of them presented adhesion or band. In 8 patients (62%), detorsion was sufficient. Resection of a segment of small bowel was necessary in 4 patients. Gangrenous of the entire bowel was observed in one patient who rapidly died. Two patients presented minor complications. One patient with Down syndrome died of bronchoaspiration. One patient has been reoperated on one year later for recurrence of the volvulus, and underwent a Noble procedure. We conclude that volvulus of the small bowel is a rare cause of acute abdomen that must be remembered. Early surgery is mandatory to reduce the risk of gangrene, which is known to double the mortality. Laparoscopy will be helpful in early diagnosis and therapy.
Resumo:
The upper part of three deep seismic lines running across the Penninic Swiss Alps of Valais have been studied. Numerous reflectors illustrate the nappe structure of this internal part of the orogen. These reflectors, even at great depths (20-25 km), can be correlated with outcropping geological features and are most likely produced by lithological boundaries rather than by mylonites zones, which are hardly reflective in such an environment. Our interpretations, largely constrained by projections of the outcropping geology, have improved our knowledge of the deep structure of this segment of the Alpine belt, enhancing the importance of the backfolding and the crustal scale deformation phase which produced the Rawil-Valpelline depression and the Aar-Toce culmination. Furthermore we have here the possibility of correlating seismic patterns produced by ductile folds with the outcropping structures.
Resumo:
PURPOSE: Orbital wall fracture may occur during endoscopic sinus surgery, resulting in oculomotor disorders. We report the management of four cases presenting with this surgical complication. METHODS: A non-comparative observational retrospective study was carried out on four patients presenting with diplopia after endoscopic ethmoidal sinus surgery. All patients underwent full ophthalmologic and orthoptic examination as well as orbital imaging. RESULTS: All four patients presented with diplopia secondary to a medial rectus lesion confirmed by orbital imaging. A large horizontal deviation as well as limitation of adduction was present in all cases. Surgical management consisted of conventional recession-resection procedures in three cases and muscle transposition in one patient. A useful field of binocular single vision was restored in two of the four patients. CONCLUSION: Orbital injury may occur during endoscopic sinus surgery and cause diplopia, usually secondary to medial rectus involvement due to the proximity of this muscle to the lamina papyracea of the ethmoid bone. Surgical management is based on orbital imaging, duration of the lesion, evaluation of anterior segment vasculature, results of forced duction testing and intraoperative findings. In most cases, treatment is aimed at the symptoms rather than the cause, and the functional prognosis remains guarded.
Resumo:
Intravitreal administration has been widely used since 20 years and has been shown to improve the treatment of diseases of the posterior segment of the eye with infectious origin or in edematous maculopathies. This route of administration allows to achieve high concentration of drug in the vitreous and avoids the problems resulting from systemic administration. However, two basic problems limit the use of intravitreal therapy. Many drugs are rapidly cleared from the vitreous humor; therefore, to reach and to maintain effective therapy repeated injections are necessary. Repeated intravitreal injections increase the risk of endophthalmitis, damage to lens, retinal detachment. Moreover, some drugs provoke a local toxicity at their effective dose inducing side-effects and possible retinal lesions. In this context, the development and the use of new drug delivery systems for intravitreal administration are necessary to treat chronic ocular diseases. Among them, particulate systems such as liposomes have been widely studied. Liposomes are easily injectable and permit to reduce the toxicity and to increase the residence time of several drugs in the eye. They are also able to protect in vivo poorly-stable molecules from degradation such as peptides and nucleic acids. Some promising results have been obtained for the treatment of retinitis induced by cytomegalovirus in human and more recently for the treatment of uveitis in animal. Finally, the fate of liposomes in ocular tissues and fluids after their injection into the vitreous and their elimination routes begin to be more known.
Resumo:
Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is a relatively poorly characterized integral membrane protein predicted to comprise four transmembrane segments in its central portion. Here, we describe a novel determinant for membrane association represented by amino acids (aa) 40 to 69 in the N-terminal portion of NS4B. This segment was sufficient to target and tightly anchor the green fluorescent protein to cellular membranes, as assessed by fluorescence microscopy as well as membrane extraction and flotation analyses. Circular dichroism and nuclear magnetic resonance structural analyses showed that this segment comprises an amphipathic alpha-helix extending from aa 42 to 66. Attenuated total reflection infrared spectroscopy and glycosylation acceptor site tagging revealed that this amphipathic alpha-helix has the potential to traverse the phospholipid bilayer as a transmembrane segment, likely upon oligomerization. Alanine substitution of the fully conserved aromatic residues on the hydrophobic helix side abrogated membrane association of the segment comprising aa 40 to 69 and disrupted the formation of a functional replication complex. These results provide the first atomic resolution structure of an essential membrane-associated determinant of HCV NS4B.