52 resultados para real-time city
Resumo:
Proteins can switch between different conformations in response to stimuli, such as pH or temperature variations, or to the binding of ligands. Such plasticity and its kinetics can have a crucial functional role, and their characterization has taken center stage in protein research. As an example, Topoisomerases are particularly interesting enzymes capable of managing tangled and supercoiled double-stranded DNA, thus facilitating many physiological processes. In this work, we describe the use of a cantilever-based nanomotion sensor to characterize the dynamics of human topoisomerase II (Topo II) enzymes and their response to different kinds of ligands, such as ATP, which enhance the conformational dynamics. The sensitivity and time resolution of this sensor allow determining quantitatively the correlation between the ATP concentration and the rate of Topo II conformational changes. Furthermore, we show how to rationalize the experimental results in a comprehensive model that takes into account both the physics of the cantilever and the dynamics of the ATPase cycle of the enzyme, shedding light on the kinetics of the process. Finally, we study the effect of aclarubicin, an anticancer drug, demonstrating that it affects directly the Topo II molecule inhibiting its conformational changes. These results pave the way to a new way of studying the intrinsic dynamics of proteins and of protein complexes allowing new applications ranging from fundamental proteomics to drug discovery and development and possibly to clinical practice.
Resumo:
Colorectal cancer (CRC) is the second leading cause of cancer-related death in developed countries. Early detection of CRC leads to decreased CRC mortality. A blood-based CRC screening test is highly desirable due to limited invasiveness and high acceptance rate among patients compared to currently used fecal occult blood testing and colonoscopy. Here we describe the discovery and validation of a 29-gene panel in peripheral blood mononuclear cells (PBMC) for the detection of CRC and adenomatous polyps (AP). Blood samples were prospectively collected from a multicenter, case-control clinical study. First, we profiled 93 samples with 667 candidate and 3 reference genes by high throughput real-time PCR (OpenArray system). After analysis, 160 genes were retained and tested again on 51 additional samples. Low expressed and unstable genes were discarded resulting in a final dataset of 144 samples profiled with 140 genes. To define which genes, alone or in combinations had the highest potential to discriminate AP and/or CRC from controls, data were analyzed by a combination of univariate and multivariate methods. A list of 29 potentially discriminant genes was compiled and evaluated for its predictive accuracy by penalized logistic regression and bootstrap. This method discriminated AP >1cm and CRC from controls with a sensitivity of 59% and 75%, respectively, with 91% specificity. The behavior of the 29-gene panel was validated with a LightCycler 480 real-time PCR platform, commonly adopted by clinical laboratories. In this work we identified a 29-gene panel expressed in PBMC that can be used for developing a novel minimally-invasive test for accurate detection of AP and CRC using a standard real-time PCR platform.
Resumo:
PURPOSE: Adequate empirical antibiotic dose selection for critically ill burn patients is difficult due to extreme variability in drug pharmacokinetics. Therapeutic drug monitoring (TDM) may aid antibiotic prescription and implementation of initial empirical antimicrobial dosage recommendations. This study evaluated how gradual TDM introduction altered empirical dosages of meropenem and imipenem/cilastatin in our burn ICU. METHODS: Imipenem/cilastatin and meropenem use and daily empirical dosage at a five-bed burn ICU were analyzed retrospectively. Data for all burn admissions between 2001 and 2011 were extracted from the hospital's computerized information system. For each patient receiving a carbapenem, episodes of infection were reviewed and scored according to predefined criteria. Carbapenem trough serum levels were characterized. Prior to May 2007, TDM was available only by special request. Real-time carbapenem TDM was introduced in June 2007; it was initially available weekly and has been available 4 days a week since 2010. RESULTS: Of 365 patients, 229 (63%) received antibiotics (109 received carbapenems). Of 23 TDM determinations for imipenem/cilastatin, none exceeded the predefined upper limit and 11 (47.8%) were insufficient; the number of TDM requests was correlated with daily dose (r=0.7). Similar numbers of inappropriate meropenem trough levels (30.4%) were below and above the upper limit. Real-time TDM introduction increased the empirical dose of imipenem/cilastatin, but not meropenem. CONCLUSIONS: Real-time carbapenem TDM availability significantly altered the empirical daily dosage of imipenem/cilastatin at our burn ICU. Further studies are needed to evaluate the individual impact of TDM-based antibiotic adjustment on infection outcomes in these patients.
Resumo:
Among 112 patients infected only by Plasmodium falciparum, WHO criteria of severity were compared with parasite load assessed by microscopy and quantitative PCR. Clinical severity was significantly correlated with higher parasite load as determined by microscopy (p < 0.001) and by PCR (p < 0.001). Hence, quantitative PCR might be useful to predict outcome.
Resumo:
Chlamydia psittaci and Chlamydia abortus are closely related intracellular bacteria exhibiting different tissue tropism that may cause severe but distinct infection in humans. C. psittaci causes psittacosis, a respiratory zoonotic infection transmitted by birds. C. abortus is an abortigenic agent in small ruminants, which can also colonize the human placenta and lead to foetal death and miscarriage. Infections caused by C. psittaci and C. abortus are underestimated mainly due to diagnosis difficulties resulting from their strict intracellular growth. We developed a duplex real-time PCR to detect and distinguish these two bacteria in clinical samples. The first PCR (PCR1) targeted a sequence of the 16S-23S rRNA operon allowing the detection of both C. psittaci and C. abortus. The second PCR (PCR2) targeted the coding DNA sequence CPSIT_0607 unique to C. psittaci. The two PCRs showed 100 % detection for ≥ 10 DNA copies per reaction (1000 copies ml- 1). Using a set of 120 samples, including bacterial reference strains, clinical specimens and infected cell culture material, we monitored 100 % sensitivity and 100 % specificity for the detection of C. psittaci and C. abortus for PCR1. When PCR1 was positive, PCR2 could discriminate C. psittaci from C. abortus with a positive predictive value of 100 % and a negative predictive value of 88 %. In conclusion, this new duplex PCR represents a low-cost and time-saving method with high-throughput potential, expected to improve the routine diagnosis of psittacosis and pregnancy complication in large-scale screening programs and also during outbreaks.