48 resultados para pure endowment


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Industrial pollution due to heavy metals such as mercury is a major concern for the environment and public health. Mercury, in particular methylmercury (MeHg), primarily affects brain development and neuronal activity, resulting in neurotoxic effects. Because chemokines can modulate brain functions and are involved in neuroinflammatory and neurodegenerative diseases, we tested the possibility that the neurotoxic effect of MeHg may interfere with the chemokine CCL2. We have used an original protocol in young mice using a MeHg-contaminated fish-based diet for 3 months relevant to human MeHg contamination. We observed that MeHg induced in the mice cortex a decrease in CCL2 concentrations, neuronal cell death, and microglial activation. Knock-out (KO) CCL2 mice fed with a vegetal control food already presented a decrease in cortical neuronal cell density in comparison with wild-type animals under similar diet conditions, suggesting that the presence of CCL2 is required for normal neuronal survival. Moreover, KO CCL2 mice showed a pronounced neuronal cell death in response to MeHg. Using in vitro experiments on pure rat cortical neurons in culture, we observed by blockade of the CCL2/CCR2 neurotransmission an increased neuronal cell death in response to MeHg neurotoxicity. Furthermore, we showed that sod genes are upregulated in brain of wild-type mice fed with MeHg in contrast to KO CCL2 mice and that CCL2 can blunt in vitro the decrease in glutathione levels induced by MeHg. These original findings demonstrate that CCL2 may act as a neuroprotective alarm system in brain deficits due to MeHg intoxication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromatographic separation of highly polar basic drugs with ideal ionspray mass spectrometry volatile mobile phases is a difficult challenge. A new quantification procedure was developed using hydrophilic interaction chromatography-mass spectrometry with turbo-ionspray ionization in the positive mode. After addition of deuterated internal standards and simple clean-up liquid extraction, the dried extracts were reconstituted in 500 microL pure acetonitrile and 5 microL was directly injected onto a Waters Atlantis HILIC 150- x 2.1-mm, 3-microm column. Chromatographic separations of cocaine, seven metabolites, and anhydroecgonine were obtained by linear gradient-elution with decreasing high concentrations of acetonitrile (80-56% in 18 min). This high proportion of organic solvent makes it easier to be coupled with MS. The eluent was buffered with 2 mM ammonium acetate at pH 4.5. Except for m-hydroxy-benzoylecgonine, the within-day and between-day precisions at 20, 100, and 500 ng/mL were below 7 and 19.1%, respectively. Accuracy was also below +/- 13.5% at all tested concentrations. The limit of quantification was 5 ng/mL (%Diff < 16.1, %RSD < 4.3) and the limit of detection below 0.5 ng/mL. This method was successfully applied to a fatal overdose. In Switzerland, cocaine abuse has dramatically increased in the last few years. A 45-year-old man, a known HIV-positive drug user, was found dead at home. According to relatives, cocaine was self-injected about 10 times during the evening before death. A low amount of cocaine (0.45 mg) was detected in the bloody fluid taken from a syringe discovered near the corpse. Besides injection marks, no significant lesions were detected during the forensic autopsy. Toxicological investigations showed high cocaine concentrations in all body fluids and tissues. The peripheral blood concentrations of cocaine, benzoylecgonine, and methylecgonine were 5.0, 10.4, and 4.1 mg/L, respectively. The brain concentrations of cocaine, benzoylecgonine, and methylecgonine were 21.2, 3.8, and 3.3 mg/kg, respectively. The highest concentrations of norcocaine (about 1 mg/L) were measured in bile and urine. Very high levels of cocaine were determined in hair (160 ng/mg), indicating chronic cocaine use. A low concentration of anhydroecgonine methylester was also found in urine (0.65 mg/L) suggesting recent cocaine inhalation. Therapeutic blood concentrations of fluoxetine (0.15 mg/L) and buprenorphine (0.1 microg/L) were also discovered. A relatively high concentration of Delta(9)-THC was measured both in peripheral blood (8.2 microg/L) and brain cortex (13.5 microg/kg), suggesting that the victim was under the influence of cannabis at the time of death. In addition, fluoxetine might have enhanced the toxic effects of cocaine because of its weak pro-arrhythmogenic properties. Likewise, combination of cannabinoids and cocaine might have increase detrimental cardiovascular effects. Altogether, these results indicate a lethal cocaine overdose with a minor contribution of fluoxetine and cannabinoids.