61 resultados para primates
Resumo:
A fundamental tenet of neuroscience is that cortical functional differentiation is related to the cross-areal differences in cyto-, receptor-, and myeloarchitectonics that are observed in ex-vivo preparations. An ongoing challenge is to create noninvasive magnetic resonance (MR) imaging techniques that offer sufficient resolution, tissue contrast, accuracy and precision to allow for characterization of cortical architecture over an entire living human brain. One exciting development is the advent of fast, high-resolution quantitative mapping of basic MR parameters that reflect cortical myeloarchitecture. Here, we outline some of the theoretical and technical advances underlying this technique, particularly in terms of measuring and correcting for transmit and receive radio frequency field inhomogeneities. We also discuss new directions in analytic techniques, including higher resolution reconstructions of the cortical surface. We then discuss two recent applications of this technique. The first compares individual and group myelin maps to functional retinotopic maps in the same individuals, demonstrating a close relationship between functionally and myeloarchitectonically defined areal boundaries (as well as revealing an interesting disparity in a highly studied visual area). The second combines tonotopic and myeloarchitectonic mapping to localize primary auditory areas in individual healthy adults, using a similar strategy as combined electrophysiological and post-mortem myeloarchitectonic studies in non-human primates.
Resumo:
Plasmodium vivax circumsporozoite (CS) protein is a leading malaria vaccine candidate previously assessed in animals and humans. Here, combinations of three synthetic polypeptides corresponding to amino (N), central repeat (R), and carboxyl (C) regions of the CS protein formulated in Montanide ISA 720 or Montanide ISA 51 adjuvants were assessed for immunogenicity in rodents and primates. BALB/c mice and Aotus monkeys were divided into test and control groups and were immunized three times with doses of 50 and 100 μg of vaccine or placebo. Antigen-specific antimalarial antibodies were determined by enzyme-linked immunosorbent assay, immunofluorescent antibody test, and IFN-γ responses by enzyme-linked immunosorbent spot (ELIspot). Both vaccine formulations were highly immunogenic in both species. Mice developed better antibody responses against C and R polypeptides, whereas the N polypeptide was more immunogenic in monkeys. Anti-peptide antibodies remained detectable for several months and recognized native proteins on sporozoites. Differences between Montanide ISA 720 and Montanide ISA 51 formulations were not significant.
Resumo:
Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo. Additionally, we explore at an anatomical level the hypothesis of coexistent segregated and integrative cortico-basal ganglia loops. We use probabilistic tractography on magnetic resonance diffusion weighted imaging data to segment basal ganglia and thalamus in 30 healthy subjects based on their cortical and subcortical projections. We introduce a novel method to define voxel-based connectivity profiles that allow representation of projections from a source to more than one target region. Using this method, we localize specific relay nuclei within predefined functional circuits. We find strong correlation between tractography-based basal ganglia parcellation and anatomical data from previously reported invasive tracing studies in nonhuman primates. Additionally, we show in vivo the anatomical basis of segregated loops and the extent of their overlap in prefrontal, premotor, and motor networks. Our findings in healthy humans support the notion that probabilistic diffusion tractography can be used to parcellate subcortical gray matter structures on the basis of their connectivity patterns. The coexistence of clearly segregated and also overlapping connections from cortical sites to basal ganglia subregions is a neuroanatomical correlate of both parallel and integrative networks within them. We believe that this method can be used to examine pathophysiological concepts in a number of basal ganglia-related disorders.
Resumo:
Rhesus macaques (Macaca mulatta) have played a valuable role in the development of human immunodeficiency virus (HIV) vaccine candidates prior to human clinical trials. However, changes and/or improvements in immunogen quality in the good manufacturing practice (GMP) process or changes in adjuvants, schedule, route, dose, or readouts have compromised the direct comparison of T-cell responses between species. Here we report a comparative study in which T-cell responses from humans and macaques to HIV type 1 antigens (Gag, Pol, Nef, and Env) were induced by the same vaccine batches prepared under GMP and administered according to the same schedules in the absence and presence of priming. Priming with DNA (humans and macaques) or alphavirus (macaques) and boosting with NYVAC induced robust and broad antigen-specific responses, with highly similar Env-specific gamma interferon (IFN-gamma) enzyme-linked immunospot assay responses in rhesus monkeys and human volunteers. Persistent cytokine responses of antigen-specific CD4(+) and CD8(+) T cells of the central memory as well as the effector memory phenotype, capable of simultaneously eliciting multiple cytokines (IFN-gamma, interleukin 2, and tumor necrosis factor alpha), were induced. Responses were highly similar in humans and primates, confirming earlier data indicating that priming is essential for inducing robust NYVAC-boosted IFN-gamma T-cell responses. While significant similarities were observed in Env-specific responses in both species, differences were also observed with respect to responses to other HIV antigens. Future studies with other vaccines using identical lots, immunization schedules, and readouts will establish a broader data set of species similarities and differences with which increased confidence in predicting human responses may be achieved.
Resumo:
Selectome (http://selectome.unil.ch/) is a database of positive selection, based on a branch-site likelihood test. This model estimates the number of nonsynonymous substitutions (dN) and synonymous substitutions (dS) to evaluate the variation in selective pressure (dN/dS ratio) over branches and over sites. Since the original release of Selectome, we have benchmarked and implemented a thorough quality control procedure on multiple sequence alignments, aiming to provide minimum false-positive results. We have also improved the computational efficiency of the branch-site test implementation, allowing larger data sets and more frequent updates. Release 6 of Selectome includes all gene trees from Ensembl for Primates and Glires, as well as a large set of vertebrate gene trees. A total of 6810 gene trees have some evidence of positive selection. Finally, the web interface has been improved to be more responsive and to facilitate searches and browsing.
Resumo:
To study the properties of human primary somatosensory (S1) cortex as well as its role in cognitive and social processes, it is necessary to noninvasively localize the cortical representations of the body. Being arguably the most relevant body parts for tactile exploration, cortical representations of fingers are of particular interest. The aim of the present study was to investigate the cortical representation of individual fingers (D1-D5), using human touch as a stimulus. Utilizing the high BOLD sensitivity and spatial resolution at 7T, we found that each finger is represented within three subregions of S1 in the postcentral gyrus. Within each of these three areas, the fingers are sequentially organized (from D1 to D5) in a somatotopic manner. Therefore, these finger representations likely reflect distinct activations of BAs 3b, 1, and 2, similar to those described in electrophysiological work in non-human primates. Quantitative analysis of the local BOLD responses revealed that within BA3b, each finger representation is specific to its own stimulation without any cross-finger responsiveness. This finger response selectivity was less prominent in BA 1 and in BA 2. A test-retest procedure highlighted the reproducibility of the results and the robustness of the method for BA 3b. Finally, the representation of the thumb was enlarged compared to the other fingers within BAs 1 and 2. These findings extend previous human electrophysiological and neuroimaging data but also reveal differences in the functional organization of S1 in human and nonhuman primates. Hum Brain Mapp 35:213-226, 2014. © 2012 Wiley Periodicals, Inc.
Resumo:
Arising from either retrotransposition or genomic duplication of functional genes, pseudogenes are "genomic fossils" valuable for exploring the dynamics and evolution of genes and genomes. Pseudogene identification is an important problem in computational genomics, and is also critical for obtaining an accurate picture of a genome's structure and function. However, no consensus computational scheme for defining and detecting pseudogenes has been developed thus far. As part of the ENCyclopedia Of DNA Elements (ENCODE) project, we have compared several distinct pseudogene annotation strategies and found that different approaches and parameters often resulted in rather distinct sets of pseudogenes. We subsequently developed a consensus approach for annotating pseudogenes (derived from protein coding genes) in the ENCODE regions, resulting in 201 pseudogenes, two-thirds of which originated from retrotransposition. A survey of orthologs for these pseudogenes in 28 vertebrate genomes showed that a significant fraction ( approximately 80%) of the processed pseudogenes are primate-specific sequences, highlighting the increasing retrotransposition activity in primates. Analysis of sequence conservation and variation also demonstrated that most pseudogenes evolve neutrally, and processed pseudogenes appear to have lost their coding potential immediately or soon after their emergence. In order to explore the functional implication of pseudogene prevalence, we have extensively examined the transcriptional activity of the ENCODE pseudogenes. We performed systematic series of pseudogene-specific RACE analyses. These, together with complementary evidence derived from tiling microarrays and high throughput sequencing, demonstrated that at least a fifth of the 201 pseudogenes are transcribed in one or more cell lines or tissues.
Resumo:
Only a very small fraction of long noncoding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into their functionality, but the absence of lncRNA annotations in non-model organisms has precluded comparative analyses. Here we present a large-scale evolutionary study of lncRNA repertoires and expression patterns, in 11 tetrapod species. We identify approximately 11,000 primate-specific lncRNAs and 2,500 highly conserved lncRNAs, including approximately 400 genes that are likely to have originated more than 300 million years ago. We find that lncRNAs, in particular ancient ones, are in general actively regulated and may function predominantly in embryonic development. Most lncRNAs evolve rapidly in terms of sequence and expression levels, but tissue specificities are often conserved. We compared expression patterns of homologous lncRNA and protein-coding families across tetrapods to reconstruct an evolutionarily conserved co-expression network. This network suggests potential functions for lncRNAs in fundamental processes such as spermatogenesis and synaptic transmission, but also in more specific mechanisms such as placenta development through microRNA production.
Resumo:
Urotensin-II controls ion/water homeostasis in fish and vascular tone in rodents. We hypothesised that common genetic variants in urotensin-II pathway genes are associated with human blood pressure or renal function. We performed family-based analysis of association between blood pressure, glomerular filtration and genes of the urotensin-II pathway (urotensin-II, urotensin-II related peptide, urotensin-II receptor) saturated with 28 tagging single nucleotide polymorphisms in 2024 individuals from 520 families; followed by an independent replication in 420 families and 7545 unrelated subjects. The expression studies of the urotensin-II pathway were carried out in 97 human kidneys. Phylogenetic evolutionary analysis was conducted in 17 vertebrate species. One single nucleotide polymorphism (rs531485 in urotensin-II gene) was associated with adjusted estimated glomerular filtration rate in the discovery cohort (p = 0.0005). It showed no association with estimated glomerular filtration rate in the combined replication resource of 8724 subjects from 6 populations. Expression of urotensin-II and its receptor showed strong linear correlation (r = 0.86, p<0.0001). There was no difference in renal expression of urotensin-II system between hypertensive and normotensive subjects. Evolutionary analysis revealed accumulation of mutations in urotensin-II since the divergence of primates and weaker conservation of urotensin-II receptor in primates than in lower vertebrates. Our data suggest that urotensin-II system genes are unlikely to play a major role in genetic control of human blood pressure or renal function. The signatures of evolutionary forces acting on urotensin-II system indicate that it may have evolved towards loss of function since the divergence of primates.
Resumo:
Several lines of research have documented early-latency non-linear response interactions between audition and touch in humans and non-human primates. That these effects have been obtained under anesthesia, passive stimulation, as well as speeded reaction time tasks would suggest that some multisensory effects are not directly influencing behavioral outcome. We investigated whether the initial non-linear neural response interactions have a direct bearing on the speed of reaction times. Electrical neuroimaging analyses were applied to event-related potentials in response to auditory, somatosensory, or simultaneous auditory-somatosensory multisensory stimulation that were in turn averaged according to trials leading to fast and slow reaction times (using a median split of individual subject data for each experimental condition). Responses to multisensory stimulus pairs were contrasted with each unisensory response as well as summed responses from the constituent unisensory conditions. Behavioral analyses indicated that neural response interactions were only implicated in the case of trials producing fast reaction times, as evidenced by facilitation in excess of probability summation. In agreement, supra-additive non-linear neural response interactions between multisensory and the sum of the constituent unisensory stimuli were evident over the 40-84 ms post-stimulus period only when reaction times were fast, whereas subsequent effects (86-128 ms) were observed independently of reaction time speed. Distributed source estimations further revealed that these earlier effects followed from supra-additive modulation of activity within posterior superior temporal cortices. These results indicate the behavioral relevance of early multisensory phenomena.
Resumo:
Biological scaling analyses employing the widely used bivariate allometric model are beset by at least four interacting problems: (1) choice of an appropriate best-fit line with due attention to the influence of outliers; (2) objective recognition of divergent subsets in the data (allometric grades); (3) potential restrictions on statistical independence resulting from phylogenetic inertia; and (4) the need for extreme caution in inferring causation from correlation. A new non-parametric line-fitting technique has been developed that eliminates requirements for normality of distribution, greatly reduces the influence of outliers and permits objective recognition of grade shifts in substantial datasets. This technique is applied in scaling analyses of mammalian gestation periods and of neonatal body mass in primates. These analyses feed into a re-examination, conducted with partial correlation analysis, of the maternal energy hypothesis relating to mammalian brain evolution, which suggests links between body size and brain size in neonates and adults, gestation period and basal metabolic rate. Much has been made of the potential problem of phylogenetic inertia as a confounding factor in scaling analyses. However, this problem may be less severe than suspected earlier because nested analyses of variance conducted on residual variation (rather than on raw values) reveals that there is considerable variance at low taxonomic levels. In fact, limited divergence in body size between closely related species is one of the prime examples of phylogenetic inertia. One common approach to eliminating perceived problems of phylogenetic inertia in allometric analyses has been calculation of 'independent contrast values'. It is demonstrated that the reasoning behind this approach is flawed in several ways. Calculation of contrast values for closely related species of similar body size is, in fact, highly questionable, particularly when there are major deviations from the best-fit line for the scaling relationship under scrutiny.
Resumo:
Alternative splicing produces multiple isoforms from the same gene, thus increasing the number of transcripts of the species. Alternative splicing is a virtually ubiquitous mechanism in eukaryotes, for example more than 90% of protein-coding genes in human are alternatively spliced. Recent evolutionary studies showed that alternative splicing is a fast evolving and highly species- specific mechanism. The rapid evolution of alternative splicing was considered as a contribution to the phenotypic diversity between species. However, the function of many isoforms produced by alternative splicing remains unclear and they might be the result of noisy splicing. Thus, the functional relevance of alternative splicing and the evolutionary mechanisms of its rapid divergence among species are still poorly understood. During my thesis, I performed a large-scale analysis of the regulatory mechanisms that drive the rapid evolution of alternative splicing. To study the evolution of alternative splicing regulatory mechanisms, I used an extensive RNA-sequencing dataset comprising 12 tetrapod species (human, chimpanzee and bonobo, gorilla, orangutan, macaque, marmoset, mouse, opossum, platypus, chicken and frog) and 8 tissues (cerebellum, brain, heart, kidney, liver, testis, placenta and ovary). To identify the catalogue of alternative splicing eis-acting regulatory elements in the different tetrapod species, I used a previously defined computational approach. This approach is a statistical analysis of exons/introns and splice sites composition and relies on a principle of compensation between splice sites strength and the presence of additional regulators. With an evolutionary comparative analysis of the exonic eis-acting regulators, I showed that these regulatory elements are generally shared among primates and more conserved than non-regulatory elements. In addition, I showed that the usage of these regulatory elements is also more conserved than expected by chance. In addition to the identification of species- specific eis-acting regulators, these results may explain the rapid evolution of alternative splicing. I also developed a new approach based on evolutionary sequence changes and corresponding alternative splicing changes to identify potential splicing eis-acting regulators in primates. The identification of lineage-specific substitutions and corresponding lineage-specific alternative splicing changes, allowed me to annotate the genomic sequences that might have played a role in the alternative splicing pattern differences among primates. Finally, I showed that the identified splicing eis-acting regulator datasets are enriched in human disease-causing mutations, thus confirming their biological relevance.
Resumo:
Avec plus de 100000 transplantations d'organes solides (TOS) par année dans le monde, la transplantation d'organes reste actuellement l'un des meilleurs traitements disponibles pour de nombreuses maladies en phase terminale. Bien que les médicaments immunosuppresseurs couramment utilisés soient efficaces dans le contrôle de la réponse immune engendrant le rejet aigu d'une greffe, la survie du greffon à long terme ainsi que la présence d'effets secondaires indésirables restent un enjeu considérable en clinique. C'est pourquoi il est nécessaire de trouver de nouvelles approches thérapeutiques innovantes permettant de contrôler la réponse immunitaire et ainsi d'améliorer les résultats à long terme. L'utilisation des lymphocytes T régulateurs (Treg), suppresseurs naturels de la réponse inflammatoire, a fait l'objet de nombreuses études ces dix dernières années, et pourrait être considérée comme un moyen intéressant d'améliorer la tolérance immunologique de la greffe. Cependant, l'un des obstacles de l'utilisation des Treg comme agent thérapeutique est leur nombre insuffisant non seulement en conditions normales, mais en particulier lors d'une forte réponse immune avec expansion de cellules immunitaires alloréactives. En raison des limitations techniques connues pour l'induction des Treg ex-vivo ou in vitro, nous avons dédié la première partie du travail de thèse à la détermination de l'efficacité de l'induction des Treg in vivo grâce à l'utilisation d'un complexe protéique IL-2/JES6-1 (IL2c). Nous avons montré que l'expansion des Treg par IL2c permettait d'augmenter la survie du greffon sur un modèle murin de transplantation de peau avec mismatch entre le donneur et le receveur pour le complexe majeur d'histocompatibilité (CMH). De plus, nous avons vu qu'en combinant IL2c à une inhibition à court terme de la voie de co-stimulation CD40L-CD40 (anti-CD154/MRl, administré au moment de la transplantation) pour empêcher l'activation des lymphocytes T, il est possible d'induire une tolérance robuste à long terme. Finalement, nos résultats soulignent l'importance de cibler une voie de co-stimulation bien particulière. En effet, l'utilisation d'IL2c combinée au blocage de la co-stimulation CD28-B7.1/2 (CTLA-4 Ig) n'induit qu'une faible prolongation de la survie de la greffe et n'induit pas de tolérance. L'application chez l'humain des traitements induisant la tolérance dans des modèles expérimentaux murins ou de primates n'a malheureusement pas montré de résultats probants en recherche clinique ; une des principales raisons étant la présence de lymphocytes B et T mémoires provenant du systeme d immunité acquise. C est pourquoi nous avons testé si la combinaison d'IL2c et MR1 améliorait la survie de la greffe dans des souris pré¬sensibilisées. Nous avons trouvé qu'en présence de lymphocytes B et T mémoires alloréactifs, l'utilisation d'IL2c et MR1 permettait une amélioration de la survie de la greffe de peau des souris immunocompétentes mais comparé aux souris receveuses naïves, aucune tolérance n'a pu être induite. Toutefois, l'ajout d'un traitement anti-LFA-1 (permettant de bloquer la circulation des lymphocytes T activées) a permis d'améliorer de manière significative la survie de la greffe. Cependant, le rejet chronique, dû à la présence de lymphocytes B activés/mémoires et la production d'anticorps donneur-spécifiques, n'a pas pu être évité. Cibler l'activation des lymphocytes T est la stratégie immunothérapeutique prépondérente après une TOS. C'est pourquoi dans la deuxième partie de cette thèse nous nous sommes intéressés au système de signalisation d'un récepteur des lymphocytes T qui dépend de la paracaspase Malti en tant que nouvelle stratégie immunosuppressive pour le contrôle des lymphocytes T alloréactifs. Nous avons montré que bien que l'inhibition de la signalisation du lymphocyte T en aval de Malti induise une tolérance envers un greffon de peau avec incompatibilités antigéniques mineures, cela ne permet cependant qu'une régulation partielle de l'alloréponse contre des antigènes du CMH. Nous nous sommes aussi intéressés spécifiquement à l'activité protéolytique de Malti. L'inhibition constitutive de l'activité protéolytique de Malti chez les souris Malti-ki s'est révélée délétère pour l'induction de la tolérance car elle diminue la fonction des Treg et augmente l'alloréactivité des cellules Thl. Cependant, lors de l'utilisation d'un inhibiteur peptidique de l'activité protéase de Malti in vitro, il a été possible d'observer une atténuation de l'alloéactivité des lymphocytes T ainsi qu'un maintien de la population des Treg existants. Ces résultats nous laissent penser que des études plus poussées sur le rôle de la signalisation médiée par Malti seraient à envisager dans le domaine de la transplantation. En résumé, les résultats obtenus durant cette thèse nous ont permis d'élucider certains mécanismes immunologiques propres à de nouvelles stratégies thérapeutiques potentielles dont le but est d'induire une tolérance lors de TOS. De plus, ces résultats nous ont permis de souligner l'importance d'utiliser des modèles davantage physiologiques contenant, notamment en tenant compte des lymphocytes B et T mémoires alloréactifs. -- Organ transplantation remains the best available treatment for many forms of end-stage organ diseases, with over 100,000 solid organ transplantations (SOT) occurring worldwide eveiy year. Although the available immunosuppressive (IS) drugs are efficient in controlling acute immune activation and graft rejection, the off-target side effects as well as long-term graft and patient survival remain a challenge in the clinic. Hence, innovative therapeutic approaches are needed to improve long-term outcome across immunological barriers. Based on extensive experimental data obtained over the last decade, it is tempting to consider immunotherapy using Treg; the natural suppressors of overt inflammatory responses, in promoting transplantation tolerance. The first hurdle for the therapeutic use of Treg is their insufficient numbers in non- manipulated individuals, in particular when facing strong immune activation and expanding alloreactive effector cells. Because of the limitations associated with current protocols aiming at ex-vivo expansion or in vitro induction of Treg, the aim of the first part of this thesis was to determine the efficacy of direct in vivo expansion of Treg using the IL-2/JES6- 1 immune complex (IL2c). We found that whilst IL2c mediated Treg expansion alone allowed the prolonged graft survival of fìlli MHC-mismatched skin grafts, its combination with short-term CD40L-CD40 co-stimulation blockade (anti-CD 154/MR1) to inhibit T cell activation administered at the time of transplantation was able to achieve long-term robust tolerance. This study also highlighted the importance of combining Treg based therapies with the appropriate co-stimulation blockade as a combination of IL2c and CD28-B7.1/2 co- stimulation blockade (CTLA-4 Ig) only resulted in slight prolongation of graft survival but not tolerance. The translation of tolerance induction therapies modelled in rodents into non-human primates or into clinical trials has seldom been successful. One main reason being the presence of pre-existing memory T- and B-cells due to acquired immunity in humans versus laboratory animals. Hence, we tested whether IL2c+MRl could promote graft survival in pre-sensitized mice. We found that in the presence of alloreactive memory T- and B-cells, IL2c+MRl combination therapy could prolong MHC-mismatched skin graft survival in immunocompetent mice but tolerance was lost compared to the naïve recipients. The addition of anti-LF A-1 treatment, which prevents the trafficking of memory T cells worked synergistically to significantly further enhance graft survival. However, late rejection mediated by activated/memory B cells and persistent donor-specific alloantibodies still occurred. Immunotherapeutic strategies targeting the activation of T cells are the cornerstone in the current immunosuppressive management after SOT. Therefore, in the next part of this thesis we investigated the paracaspase Malti-dependent T-cell receptor signalling as a novel immunosuppressive strategy to control alloreactive T cells in transplantation. We observed that although the inhibition of Malti downstream T signalling lead to tolerance of a minor H- mismatch skin grafts, it was however not sufficient to regulate alloresponses against MHC mismatches and only prolonged graft survival. Furthermore, we investigated the potential of more selectively targeting the protease activity of Malti. Constitutive inhibition of Malti protease activity in Malti-ki mice was detrimental to tolerance induction as it diminished Treg function and increased Thl alloreactivity. However, when using a small peptide inhibitor of Malti proteolytic activity in vitro, we observed an attenuation of alloreactive T cells and sparing of the pre-existing Treg pool. This indicates that further investigation of the role of Malti signalling in the field of transplantation is required. Collectively, the findings of this thesis provide immunological mechanisms underlying novel therapeutic strategies for the promotion of tolerance in SOT. Moreover, we highlight the importance of testing tolerance induction therapies in more physiological models with pre-existing alloreactive memory T and B cells.
Resumo:
The human auditory cortex comprises the supratemporal plane and large parts of the temporal and parietal convexities. We have investigated the relevant intrahemispheric cortico-cortical connections using in vivo DSI tractography combined with landmark-based registration, automatic cortical parcellation and whole-brain structural connection matrices in 20 right-handed male subjects. On the supratemporal plane, the pattern of connectivity was related to the architectonically defined early-stage auditory areas. It revealed a three-tier architecture characterized by a cascade of connections from the primary auditory cortex to six adjacent non-primary areas and from there to the superior temporal gyrus. Graph theory-driven analysis confirmed the cascade-like connectivity pattern and demonstrated a strong degree of segregation and hierarchy within early-stage auditory areas. Putative higher-order areas on the temporal and parietal convexities had more widely spread local connectivity and long-range connections with the prefrontal cortex; analysis of optimal community structure revealed five distinct modules in each hemisphere. The pattern of temporo-parieto-frontal connectivity was partially asymmetrical. In conclusion, the human early-stage auditory cortical connectivity, as revealed by in vivo DSI tractography, has strong similarities with that of non-human primates. The modular architecture and hemispheric asymmetry in higher-order regions is compatible with segregated processing streams and lateralization of cognitive functions.
Resumo:
What drove the transition from small-scale human societies centred on kinship and personal exchange, to large-scale societies comprising cooperation and division of labour among untold numbers of unrelated individuals? We propose that the unique human capacity to negotiate institutional rules that coordinate social actions was a key driver of this transition. By creating institutions, humans have been able to move from the default 'Hobbesian' rules of the 'game of life', determined by physical/environmental constraints, into self-created rules of social organization where cooperation can be individually advantageous even in large groups of unrelated individuals. Examples include rules of food sharing in hunter-gatherers, rules for the usage of irrigation systems in agriculturalists, property rights and systems for sharing reputation between mediaeval traders. Successful institutions create rules of interaction that are self-enforcing, providing direct benefits both to individuals that follow them, and to individuals that sanction rule breakers. Forming institutions requires shared intentionality, language and other cognitive abilities largely absent in other primates. We explain how cooperative breeding likely selected for these abilities early in the Homo lineage. This allowed anatomically modern humans to create institutions that transformed the self-reliance of our primate ancestors into the division of labour of large-scale human social organization.