152 resultados para polymer relaxation processes
Resumo:
RÉSUMÉ Une espèce est rarement composée d'une population unique. Parce que les individus ont des capacités de dispersion limitées et que les paysages sont des mosaïques d'habitats, la plupart des espèces sont plutôt composées de sous-populations connectées par la migration. Cette variation spatiale influence directement la distribution de la variabilité génétique dans et entre les populations. Durant ce travail, nous avons abordé certains des processus populationnels qui ont joué un rôle supposé dans l'apparition de nouvelles espèces au sein du genre Trochulus. Plus précisément, nous avons tenté d'évaluer les impacts respectifs de l'isolement passé (facteurs historiques) et présent (facteurs locaux). Nous avons d'abord pu montrer que les faibles capacités de dispersion des escargots terrestres ont directement influencé leur histoire évolutive à toutes les échelles spatiales et temporelles. En réduisant l'effet homogénéisant de la migration, une faible dispersion maintient dans les populations les traces génétiques d'évènements passés. A l'échelle de la distribution globale de Trochulus villosus, ces traces ont permis de reconstruire une histoire faite d'isolements et d'expansions de populations. En combinant des données génétiques avec une modélisation de la niche climatique passée, il a été possible de proposer un scénario significativement meilleur que toutes les hypothèses alternatives que nous avons testées. A l'échelle locale par contre, l'héritage historique est difficile à distinguer de la dynamique actuelle. Ce fut le cas des lignées mitochondriales du complexe sericeus-hispidus : les deux principales lignées étaient phylogénétiquement éloignées, avaient eu des démographies passées différentes et corrélaient avec des différences morphologiques. D'un autre côté, le flux de gène nucléaire était fort, contredisant l'idée de deux espèces cryptiques isolées reproductivement. Pour pouvoir conclure à la présence ou non de deux espèces, il nous a manqué des informations locales sur la dynamique des populations et les conditions écologiques que l'on trouve dans la région d'étude. Enfin, nous avons pu souligner que la connectivité entre populations d'escargots est soumise à la qualité des habitats et à leur organisation spatiale. Les escargots sont dépendants d'un habitat et s'y adaptent, comme l'indiquent la présence de «poils » uniquement sur la coquille d'espèces vivant dans des habitats humides ou la corrélation entre morphologie et habitat au sein du complexe sericeus-hispidus. Logiquement donc, les escargots migrent préférentiellement au travers d'habitats favorables comme l'a montré la réduction de flux de gènes au travers des prairies chez T. villosus (une espèce forestière). De ces données, nous pouvons supposer que les populations d'escargots en particulier, et des espèces à faible dispersion en général, ont de fortes chances d'être affectées par les changements climatiques, avec de probables implications pour leurs histoires évolutives. SUMMARY : Species rarely consists in a single population. Because individuals have limited dispersal abilities, because landscapes are habitat patchworks, most species are made of several subpopulations connected by migration. This spatial variation has consequences on the distribution of genetic diversity within and between populations, creating a structure among the populations. During the present work, we investigated some of the population processes assumed to have played an important role on the speciation within the genus Trochulus. More specifically, we questioned the respective impacts of past (historical factors) or present (local factors) population isolations. We first could show that the poor dispersal abilities of land snails have had profound impacts on their evolutionary histories at all spatial and temporal scales. Low dispersal maintains a strong signature of past events in the populations by minimising the homogenising effects of geneflow. At the scale of Trochulus villosus global distribution, they allowed to retrieve the detailed history of this species population isolations and expansions. Combining a large genetic dataset with paleo-climatic niche modelling ended up with a historical scenario significantly better than all traditional alternatives we tested. At local scale on the contrary, past events become difficult to tease apart from ongoing processes. This was the case for the divergent mitochondria) lineages within the sericeus-hispidus complex: the two principal lineages appeared to be phylogenetically distant, to have experienced different demographic histories and to correlate with morphological differences. On the other hand, nuclear (present day) geneflow was high, contradicting the idea of two reproductively isolated cryptic species. Information on the local population dynamics and environmental conditions are lacking to be able to decide whether past isolation has indeed resulted here in new species. Finally, we emphasised the importance of the habitat types present in a landscape as well as their spatial organisation for the population connectivity of land snails. These species are tightly dependent on a habitat and adapt to it as shown by thé occurrence of hair-like structures only in species living in humid environments or by the correlation between shell morphology and habitat in the sericeus-hispidus complex. As a result, land snails preferentially migrate through favourable habitats: Trochulus villosus, a forest species, had its geneflow significantly reduced across meadows. From these data, we can hypothesise that the populations of land snails in particular and of low dispersing species in general are likely to be strongly affected by the ongoing climate changes, with potential major consequences on their evolutionary histories.
Resumo:
Huntington's disease (HD) is a monogenic neurodegenerative disease that affects the efferent neurons of the striatum. The protracted evolution of the pathology over 15 to 20 years, after clinical onset in adulthood, underscores the potential of therapeutic tools that would aim at protecting striatal neurons. Proteins with neuroprotective effects in the adult brain have been identified, among them ciliary neurotrophic factor (CNTF), which protected striatal neurons in animal models of HD. Accordingly, we have carried out a phase I study evaluating the safety of intracerebral administration of this protein in subjects with HD, using a device formed by a semipermeable membrane encapsulating a BHK cell line engineered to synthesize CNTF. Six subjects with stage 1 or 2 HD had one capsule implanted into the right lateral ventricle; the capsule was retrieved and exchanged for a new one every 6 months, over a total period of 2 years. No sign of CNTF-induced toxicity was observed; however, depression occurred in three subjects after removal of the last capsule, which may have correlated with the lack of any future therapeutic option. All retrieved capsules were intact but contained variable numbers of surviving cells, and CNTF release was low in 13 of 24 cases. Improvements in electrophysiological results were observed, and were correlated with capsules releasing the largest amount of CNTF. This phase I study shows the safety, feasibility, and tolerability of this gene therapy procedure. Heterogeneous cell survival, however, stresses the need for improving the technique.
Resumo:
Host-pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen-mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host-pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context.
Resumo:
Developing a sense of identity is a crucial psychosocial task for young people. The purpose of this study was to evaluate identity development in French-speaking adolescents and emerging adults (in France and Switzerland) using a process-oriented model of identity formation including five dimensions (i.e., exploration in breadth, commitment making, exploration in depth, identification with commitment, and ruminative exploration). The study included participants from three different samples (total N = 2239, 66.7% women): two samples of emerging adult student and one sample of adolescents. Results confirmed the hypothesized five-factor dimensional model of identity in our three samples and provided evidence for convergent validity of the model. The results also indicated that exploration in depth might be subdivided in two aspects: a first form of exploration in depth leading to a better understanding and to an increase of the strength of current commitments and a second form of exploration in depth leading to a re-evaluation and a reconsideration of current commitments. Further, the identity status cluster solution that emerged is globally in line with previous literature (i.e., achievement, foreclosure, moratorium, carefree diffusion, diffused diffusion, undifferentiated). However, despite a structural similarity, we found variations in identity profiles because identity development is shaped by cultural context. These specific variations are discussed in light of social, educational and economic differences between France and the French-speaking part of Switzerland. Implications and suggestions for future research are offered.
Resumo:
UV−excimer laser photoablation was used, in combination with surface blocking techniques, to pattern proteins on the surfaces of polyimide and poly(ethylene terephthalate). This technique involves physical adsorption of avidin through laser-defined openings in low-temperature laminates or adsorbed protein blocking layers. Visualization of biomolecular patterns were monitored using avidin and fluorescein-labeled biotin as a model receptor−ligand couple. Adsorbed proteins could be shown to bind to UV-laser-treated polymer surfaces up to three times higher than on commercially available polymers. UV-laser photoablation was also used for the generation of three-dimensional structure, which leads to the possibility of biomolecule patterning within polymer-based microanalytical systems. The simplicity and easy handling of the described technique facilitate its application in microdiagnostic devices.
Resumo:
Calcitic nanofibres are ubiquitous habits of sec- ondary calcium carbonate (CaCO3 ) accumulations observed in calcareous vadose environments. Despite their widespread occurrence, the origin of these nanofeatures remains enig- matic. Three possible mechanisms fuel the debate: (i) purely physicochemical processes, (ii) mineralization of rod-shaped bacteria, and (iii) crystal precipitation on organic templates. Nanofibres can be either mineral (calcitic) or organic in na- ture. They are very often observed in association with needle fibre calcite (NFC), another typical secondary CaCO3 habit in terrestrial environments. This association has contributed to some confusion between both habits, however they are truly two distinct calcitic features and their recurrent asso- ciation is likely to be an important fact to help understanding the origin of nanofibres. In this paper the different hypotheses that currently exist to explain the origin of calcitic nanofibres are critically reviewed. In addition to this, a new hypothe- sis for the origin of nanofibres is proposed based on the fact that current knowledge attributes a fungal origin to NFC. As this feature and nanofibres are recurrently observed together, a possible fungal origin for nanofibres which are associated with NFC is investigated. Sequential enzymatic digestion of the fungal cell wall of selected fungal species demonstrates that the fungal cell wall can be a source of organic nanofibres. The obtained organic nanofibres show a striking morpho- logical resemblance when compared to their natural coun- terparts, emphasizing a fungal origin for part of the organic nanofibres observed in association with NFC. It is further hy- pothesized that these organic nanofibres may act as templates for calcite nucleation in a biologically influenced mineraliza- tion process, generating calcitic nanofibres. This highlights the possible involvement of fungi in CaCO3 biomineraliza- tion processes, a role still poorly documented. Moreover, on a global scale, the organomineralization of organic nanofi- bres into calcitic nanofibres might be an overlooked process deserving more attention to specify its impact on the biogeo- chemical cycles of both Ca and C.
Resumo:
Proton T1 relaxation times of metabolites in the human brain have not previously been published at 7 T. In this study, T1 values of CH3 and CH2 group of N-acetylaspartate and total creatine as well as nine other brain metabolites were measured in occipital white matter and gray matter at 7 T using an inversion-recovery technique combined with a newly implemented semi-adiabatic spin-echo full-intensity acquired localized spectroscopy sequence (echo time = 12 ms). The mean T1 values of metabolites in occipital white matter and gray matter ranged from 0.9 to 2.2 s. Among them, the T1 of glutathione, scyllo-inositol, taurine, phosphorylethanolamine, and N-acetylaspartylglutamate were determined for the first time in the human brain. Significant differences in T1 between white matter and gray matter were found for water (-28%), total choline (-14%), N-acetylaspartylglutamate (-29%), N-acetylaspartate (+4%), and glutamate (+8%). An increasing trend in T1 was observed when compared with previously reported values of N-acetylaspartate (CH3 ), total creatine (CH3 ), and total choline at 3 T. However, for N-acetylaspartate (CH3 ), total creatine, and total choline, no substantial differences compared to previously reported values at 9.4 T were discernible. The T1 values reported here will be useful for the quantification of metabolites and signal-to-noise optimization in human brain at 7 T. Magn Reson Med 69:931-936, 2013. © 2012 Wiley Periodicals, Inc.
Resumo:
Since 1998 the highly polluted Havana Bay ecosystem has been the subject of a mitigation program. In order to determine whether pollution-reduction strategies were effective, we have evaluated the historical trends of pollution recorded in sediments of the Bay. A sediment core was dated radiometrically using natural and artificial fallout radionuclides. An irregularity in the (210)Pb record was caused by an episode of accelerated sedimentation. This episode was dated to occur in 1982, a year coincident with the heaviest rains reported in Havana over the XX century. Peaks of mass accumulation rates (MAR) were associated with hurricanes and intensive rains. In the past 60 years, these maxima are related to strong El Niño periods, which are known to increase rainfall in the north Caribbean region. We observed a steady increase of pollution (mainly Pb, Zn, Sn, and Hg) since the beginning of the century to the mid 90s, with enrichment factors as high as 6. MAR and pollution decreased rapidly after the mid 90s, although some trace metal levels remain high. This reduction was due to the integrated coastal zone management program introduced in the late 90s, which dismissed catchment erosion and pollution.
Resumo:
The rapid stopping of specific parts of movements is frequently required in daily life. Yet, whether selective inhibitory control of movements is mediated by a specific neural pathway or by the combination between a global stopping of all ongoing motor activity followed by the re-initiation of task-relevant movements remains unclear. To address this question, we applied time-wise statistical analyses of the topography, global field power and electrical sources of the event-related potentials to the global vs selective inhibition stimuli presented during a Go/NoGo task. Participants (n = 18) had to respond as fast as possible with their two hands to Go stimuli and to withhold the response from the two hands (global inhibition condition, GNG) or from only one hand (selective inhibition condition, SNG) when specific NoGo stimuli were presented. Behaviorally, we replicated previous evidence for slower response times in the SNG than in the Go condition. Electrophysiologically, there were two distinct phases of event-related potentials modulations between the GNG and the SNG conditions. At 110âeuro"150 ms post-stimulus onset, there was a difference in the strength of the electric field without concomitant topographic modulation, indicating the differential engagement of statistically indistinguishable configurations of neural generators for selective and global inhibitory control. At 150âeuro"200 ms, there was topographic modulation, indicating the engagement of distinct brain networks. Source estimations localized these effects within bilateral temporo-parieto-occipital and within parieto-central networks, respectively. Our results suggest that while both types of motor inhibitory control depend on global stopping mechanisms, selective and global inhibition still differ quantitatively at early attention-related processing phases.
Resumo:
In recent years, elevated arsenic concentrations have been found in waters and soils of many, countries, often resulting in a health threat for the local population. Switzerland is not an exception and this paper deals with the release and subsequent fate of arsenic in a 200-km(2) mountainous watershed, characterized by crystalline silicate rocks (gneisses, schists, amphibolites) that contain abundant As-bearing sulfide ore deposits, some of which have been mined for iron and gold in the past. Using analytical methods common for mineralogical, ground water and soil studies (XRD, XRF, XAS-XANES and -EXAFS, electron microprobe, extraction, ICP, AAS with hydride generator, ion chromatography), seven different field situations and related dispersion processes of natural arsenic have been studied: (1) release by rock weathering, (2) transport and deposition by water and ice; (3) release of As to the ground and surface water due to increasing pH; (4) accumulation in humic soil horizons; (5) remobilization by reduction in water-saturated soils and stagnant ground waters; (6) remobilization by using P-rich fertilizers or dung and (7) oxidation, precipitation and dilution in surface waters. Comparison of the results with experimental adsorption studies and speciation diagrams from the literature allows us to reconstruct and identify the typical behavior of arsenic in a natural environment under temperate climatic conditions. The main parameters identified are: (a) once liberated from the primary minerals, sorption processes on Fe-oxy-hydroxides dominate over Al-phases, such as Al-hydroxides or clay minerals and limit the As concentrations in the spring and well waters between 20 and 300 mug/l. (b) Precipitation as secondary minerals is limited to the weathering domain, where the As concentrations are still high and not yet too diluted by rain and soils waters. (c) Although neutral and alkaline pH conditions clearly increase the mobility of As, the main factor to mobilize As is a low redox potential (Eh close or below 0 mV), which favors the dissolution of the Fe-oxy-hydroxides on which the As is sorbed. (d) X-ray absorption spectroscopy (XAS) of As in water-logged humic forest soils indicates that the reduction to As III only occurs at the solid-water interface and that the solid contains As as As V (e) A and Bh horizons of humic cambisols can effectively capture As when As-rich waters flow through them. Complex spatial and temporal variation of the various parameters in a watershed results in repeated mobilization and immobilization of As, which continuously transports As from the upper to the lower part of a watershed and ultimately to the ocean. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Despite major advances in care of premature infants, survivors exhibit mild cognitive deficits in around 40%. Beside severe intraventricular haemorrhages (IVH) and cystic periventricular leucomalacia (PVL), more subtle patterns such as grade I and II IVH, punctuate WM lesions and diffuse PVL might be linked to the cognitive deficits. Grey matter disease is also recognized to contribute to long-term cognitive impairment.¦OBJECTIVE: We intend to use novel MR techniques to study more precisely the different injury patterns. In particular MP2RAGE (magnetization prepared dual rapid echo gradient) produces high-resolution quantitative T1 relaxation maps. This contrast is known to reflect tissue anomalies such as white matter injury in general and dysmyelination in particular. We also used diffusion tensor imaging, a quantitative technique known to reflect white matter maturation and disease.¦DESIGN/METHODS: All preterm infants born under 30 weeks of GA were included. Serial 3T MR-imaging using a neonatal head-coil at DOL 3, 10 and at term equivalent age (TEA), using DTI and MP2RAGE sequences was performed. MP2RAGE generates a T1 map and allows calculating the relaxation time T1. Multiple measurements were performed for each exam in 12 defined white and grey matter ROIs.¦RESULTS: 16 patients were recruited: mean GA 27 2/7 w (191,2d SD±10,8), mean BW 999g (SD±265). 39 MRIs were realized (12 early: mean 4,83d±1,75, 13 late: mean 18,77d±8,05 and 14 at TEA: 88,91d±8,96). Measures of relaxation time T1 show a gradual and significant decrease over time (for ROI PLIC mean±SD in ms: 2100.53±102,75, 2116,5±41,55 and 1726,42±51,31 and for ROI central WM: 2302,25±79,02, 2315,02±115,02 and 1992,7±96,37 for early, late and TEA MR respectively). These trends are also observed in grey matter area, especially in thalamus. Measurements of ADC values show similar monotonous decrease over time.¦CONCLUSIONS: From these preliminary results, we conclude that quantitative MR imaging in very preterm infants is feasible. On the successive MP2RAGE and DTI sequences, we observe a gradual decrease over time in the described ROIs, representing the progressive maturation of the WM micro-structure and interestingly the same evolution is observed in the grey matter. We speculate that our study will provide normative values for T1map and ADC and might be a predictive factor for favourable or less favourable outcome.