61 resultados para poly-L-lactic acid
Resumo:
PURPOSE: To evaluate the safety and potential use of poly(lactic) acid (PLA) and poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) as vectors for gene transfer to RPE cells. METHODS: Experiments were conducted with primary bovine RPE cells and with the ARPE-19 human RPE cell line. Rhodamine loaded NPs were used to study factors influencing the internalization process by the various RPE cells: concentrations of NPs, duration of contact time, stage of cell culture and ambient temperature. The extent of NPs internalization was evaluated by fluorescence and phase microscopy. Potential NP toxicity was measured by the trypan blue exclusion dye test and the MTT method. Green fluorescent protein (GFP) plasmid or red nuclear fluorescent protein (RNFP) plasmid were sequestered in NPs. The ability ot these "loaded" NPs to generate gene transfection and protein expression in RPE cells was assessed both in vivo and in vitro by fluorescence and confocal microscopy. RESULTS: The extent of NP internalization in cultured cells increases with their concentration reaching a plateau at 1 mg/ml and a contact time of up to 6 h. Temperature and culture stage did not influence the in vitro internalization process. No toxic effects on RPE cells could be detected when these were incubated with up to 4 mg/ml of NPs. In human and bovine RPE cells incubated with GFP loaded NPs, cytoplasmic green fluorescence was observed in 14+/-1.65% of the cultured cells. Incubation with RNFP loaded NPs yielded a nuclear red fluorescence in 18.9+/-1.6% of the cells. These percentage levels of expression initially detected after 48 h of incubation remained unchanged during the following 8 additional days in culture. No significant differences in the extent of cytoplasm or nuclear fluorescence expression were observed between bovine or human RPE cultured cells. In vivo, a preferential RNFP expression within the RPE cell layer was detected after intra vitreous injection of RNFP plasmid loaded NPs. CONCLUSIONS: The ability of PLGA NPs to sequester plasmids, their nontoxic characteristics, and rapid internalization enables gene transfer and expression in RPE cells. These findings may be of potential use when designing future gene therapy strategies for ocular diseases of the posterior segment.
Resumo:
BACKGROUND: Lactate protects mice against the ischaemic damage resulting from transient middle cerebral artery occlusion (MCAO) when administered intracerebroventricularly at reperfusion, yielding smaller lesion sizes and a better neurological outcome 48 h after ischaemia. We have now tested whether the beneficial effect of lactate is long-lasting and if lactate can be administered intravenously. METHODS: Male ICR-CD1 mice were subjected to 15-min suture MCAO under xylazine + ketamine anaesthesia. Na L-lactate (2 µl of 100 mmol/l) or vehicle was administered intracerebroventricularly at reperfusion. The neurological deficit was evaluated using a composite deficit score based on the neurological score, the rotarod test and the beam walking test. Mice were sacrificed at 14 days. In a second set of experiments, Na L-lactate (1 µmol/g body weight) was administered intravenously into the tail vein at reperfusion. The neurological deficit and the lesion volume were measured at 48 h. RESULTS: Intracerebroventricularly injected lactate induced sustained neuroprotection shown by smaller neurological deficits at 7 days (median = 0, min = 0, max = 3, n = 7 vs. median = 2, min = 1, max = 4.5, n = 5, p < 0.05) and 14 days after ischaemia (median = 0, min = 0, max = 3, n = 7 vs. median = 3, min = 0.5, max = 3, n = 7, p = 0.05). Reduced tissue damage was demonstrated by attenuated hemispheric atrophy at 14 days (1.3 ± 4.0 mm(3), n = 7 vs. 12.1 ± 3.8 mm(3), n = 5, p < 0.05) in lactate-treated animals. Systemic intravenous lactate administration was also neuroprotective and attenuated the deficit (median = 1, min = 0, max = 2.5, n = 12) compared to vehicle treatment (median = 1.5, min = 1, max = 8, n = 12, p < 0.05) as well as the lesion volume at 48 h (13.7 ± 12.2 mm(3), n = 12 vs. 29.6 ± 25.4 mm(3), n = 12, p < 0.05). CONCLUSIONS: The beneficial effect of lactate is long-lasting: lactate protects the mouse brain against ischaemic damage when supplied intracerebroventricularly during reperfusion with behavioural and histological benefits persisting 2 weeks after ischaemia. Importantly, lactate also protects after systemic intravenous administration, a more suitable route of administration in a clinical emergency setting. These findings provide further steps to bring this physiological, commonly available and inexpensive neuroprotectant closer to clinical translation for stroke.
Resumo:
According to the hypothesis of Traub, also known as the 'formula of Traub', postmortem values of glucose and lactate found in the cerebrospinal fluid or vitreous humor are considered indicators of antemortem blood glucose levels. However, because the lactate concentration increases in the vitreous and cerebrospinal fluid after death, some authors postulated that using the sum value to estimate antemortem blood glucose levels could lead to an overestimation of the cases of glucose metabolic disorders with fatal outcomes, such as diabetic ketoacidosis. The aim of our study, performed on 470 consecutive forensic cases, was to ascertain the advantages of the sum value to estimate antemortem blood glucose concentrations and, consequently, to rule out fatal diabetic ketoacidosis as the cause of death. Other biochemical parameters, such as blood 3-beta-hydroxybutyrate, acetoacetate, acetone, glycated haemoglobin and urine glucose levels, were also determined. In addition, postmortem native CT scan, autopsy, histology, neuropathology and toxicology were performed to confirm diabetic ketoacidosis as the cause of death. According to our results, the sum value does not add any further information for the estimation of antemortem blood glucose concentration. The vitreous glucose concentration appears to be the most reliable marker to estimate antemortem hyperglycaemia and, along with the determination of other biochemical markers (such as blood acetone and 3-beta-hydroxybutyrate, urine glucose and glycated haemoglobin), to confirm diabetic ketoacidosis as the cause of death.
Resumo:
CONTEXT: The high diagnostic performance of plasma-free metanephrines (metanephrine and normetanephrine) (MN) for pheochromocytoma (PHEO) results from the tumoral expression of catechol-O-methyltransferase (COMT), the enzyme involved in O-methylation of catecholamines (CAT). Intriguingly, metanephrine, in contrast to epinephrine, is not remarkably secreted during a stress in hypertensive or normotensive subjects, whereas in PHEO patients CAT and MN are both raised to high levels. Because epinephrine and metanephrine are almost exclusively produced by the adrenal medulla, this suggests distinct CAT metabolism in chromaffin cells and pheochromocytes. OBJECTIVE: The objective of the study was to compare CAT metabolism between adrenal medulla and PHEO tissue regarding related enzyme expression including monoamine oxidases (MAO) and COMT. DESIGN: A multicenter comparative study was conducted. STUDY PARTICIPANTS: The study included 21 patients with a histologically confirmed PHEO and eight adrenal glands as control. MAIN OUTCOME MEASURES: CAT, dihydroxyphenol-glycol, 3,4-dihydroxyphenylacetic acid, and MN were measured in adrenal medulla and PHEO tissue. Western blot, quantitative RT-PCR and immunofluorescence studies for MAOA, MAOB, tyrosine hydroxylase, dopamine β-hydroxylase, L-amino acid decarboxylase, and COMT were applied on tissue homogenates and cell preparations. RESULTS: At both the protein and mRNA levels, MAOA and COMT are detected less often in PHEO compared with adrenal medulla, conversely to tyrosine hydroxylase, L-amino acid decarboxylase, and dopamine β-hydroxylase, much more expressed in tumor tissue. MAOB protein is detected less often in tumor but not differently expressed at the mRNA level. Dihydroxyphenol-glycol is virtually absent from tumor, whereas MN, produced by COMT, rises to 4.6-fold compared with adrenal medulla tissue. MAOA down-regulation was observed in 100% of tumors studied, irrespectively of genetic alteration identified; on the other hand, MAOA was strongly expressed in all adrenal medulla collected independently of age, gender, or late sympathetic activation of the deceased donor. CONCLUSION: High concentrations of MN in tumor do not only arise from CAT overproduction but also from low MAOA expression, resulting in higher substrate availability for COMT.
Resumo:
We used a hemolytic plaque assay for insulin to determine whether the same pancreatic B cells respond to D-glucose, 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (BCH) and the association of this nonmetabolized analogue of L-leucine with either the monomethyl ester of succinic acid (SME) or the dimethyl ester of L-glutamic acid (GME). During a 30-min incubation in the absence of D-glucose, BCH alone (5 mM) had no effect on insulin release. In contrast, the combination of BCH with either SME (10 mM) or GME (3 mM) stimulated insulin release to the same extent observed in the sole presence of 16.7 mM D-glucose. The effects of BCH plus SME and BCH plus GME on both percentage of secreting B cells and total insulin output were little affected in the presence of D-glucose concentrations ranging from 0 to 16.7 mM. Varying the concentration of SME from 2 to 10 mM also did not influence these effects. In other experiments, the very same B cells were first exposed 45 min to 16.7 mM D-glucose, then incubated 45 min in the presence of only BCH and SME. Under these conditions, most (80.3 +/- 2.5%) of the cells contributing to insulin release did so during both incubation periods. Furthermore, virtually all cells responding to BCH and SME during the second incubation corresponded to cells also responsive to D-glucose during the first incubation. Similar observations were made when the sequence of the two incubations was reversed.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
This study examines the role of glucose and lactate as energy substrates to sustain synaptic vesicle cycling. Synaptic vesicle turnover was assessed in a quantitative manner by fluorescence microscopy in primary cultures of mouse cortical neurons. An electrode-equipped perfusion chamber was used to stimulate cells both by electrical field and potassium depolarization during image acquisition. An image analysis procedure was elaborated to select in an unbiased manner synaptic boutons loaded with the fluorescent dye N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide (FM1-43). Whereas a minority of the sites fully released their dye content following electrical stimulation, others needed subsequent K(+) depolarization to achieve full release. This functional heterogeneity was not significantly altered by the nature of metabolic substrates. Repetitive stimulation sequences of FM1-43 uptake and release were then performed in the absence of any metabolic substrate and showed that the number of active sites dramatically decreased after the first cycle of loading/unloading. The presence of 1 mM glucose or lactate was sufficient to sustain synaptic vesicle cycling under these conditions. Moreover, both substrates were equivalent for recovery of function after a phase of decreased metabolic substrate availability. Thus, lactate appears to be equivalent to glucose for sustaining synaptic vesicle turnover in cultured cortical neurons during activity.
Resumo:
RESUME Le cancer du col de l'utérus, deuxième cause de mort par cancer chez la femme, a pu être associé à une infection par plusieurs types de virus du Papillome Humain (HPV), et en particulier HPV 16. Les vaccins prophylactiques sont efficaces à prévenir le cancer du col utérin alors que les lésions de haut grade sont généralement traitées par ablation chirurgicale et par d'éventuels traitements additionnels. Les risques de récurrence liés aux ablations et le taux de mortalité (50%) lié au cancer, démontrent le besoin de développer des stratégies alternatives afin de cibler les lésions précancéreuses. A ce jour, les vaccins thérapeutiques ont démontré peu de résultats cliniques, contrastant avec les régressions de tumeurs ectopiques observées après vaccination dans des modèles murins avec tumeurs associées à HPV. L'induction de réponses immunitaires protectrices dans la muqueuse génitale semble être cruciale pour l'efficacité des vaccins thérapeutiques HPV et évaluer leur efficacité dans un modèle murin avec tumeurs-HPV génitales représente un pré-requis important avant de procéder à des études cliniques. Par conséquent, nous avons établi un modèle murin orthotopique où des tumeurs se développent dans (a muqueuse génitale après une instillation intra-vaginale (i.vag) de cellules tumorales exprimant les oncogènes E6/E7 d'HPV 16 et transduites par un vecteur lentiviral codant la luciferase afin de suivre le développement de ces tumeurs in vivo par imagerie. La caractérisation histologique a démontré que les tumeurs grandissaient dans l'épithélium vaginal et en accord avec leur localisation, des cellules Τ CD8 spécifiques à E7 induites par la tumeur n'étaient détectées que dans la muqueuse génitale et les ganglions drainants. Une infiltration de cellules Τ régulatrices a aussi été mise en évidence, empêchant la régression spontanée de ces tumeurs. Par conséquent, ce modèle devrait être plus adéquat pour tester des stratégies thérapeutiques, étant donné qu'il partage certaines similarités immunologiques avec les lésions génitales naturelles causées par HPV. Etant donné que les oncogènes E6 et E7 d'HPV sont nécessaires à la maintenance du phénotype cancéreux des cellules cervicales, elles représentent des antigènes cibles pour la vaccination thérapeutique. Nous avons démontré que des souris immunisées par voie sous-cutanée (s.c.) avec une dose d'un vaccin à base de polypeptide E7 d'HPV 16 et d'adjuvants, présentaient de nombreuses cellules Τ CD8 sécrétant de l'IFN-γ spécifiquement à E7 dans leurs organes lymphatiques mais également dans la muqueuse génitale. De plus, le manque de corrélation entre les réponses spécifiques mesurées dans la périphérie et dans la muqueuse génitale souligne la nécessité et l'importance de déterminer les réponses immunitaires localement là où les lésions dues à HPV se développent. Si une vaccination par voie muqueuse est plus propice à traiter/régresser des infections génitales/tumeurs que le voie parentérale est un sujet débattu. Nos données montrent que seule la voie s.c. était capable de régresser la quasi totalité des tumeurs génitales chez la souris bien que des réponses CD8 spécifiques à E7 similaires étaient mesurées dans la muqueuse génitale après des vaccinations intra-nasale et i.vag. Afin d'augmenter la réponse spécifique au vaccin dans la muqueuse génitale, des immunostimulants ont été administrés par voie i.vag après vaccination. Nous avons démontré qu'une application i.vag d'agonistes des Toll like receptors après une vaccination s.c. induisait de manière significative une augmentation des cellules Τ CD8 sécrétant de l'IFN-γ spécifiquement à E7 dans la muqueuse génitale. Plus précisément et concernant les CpG et Poly l:C, l'effet était probablement associé à une attraction locale des cellules Τ CD8 et deuxièmement dépendait respectivement des voies de signalisation TLR9 et TLR3/Mda5. Finalement, cette stratégie combinatoire a permis de régresser des grosses tumeurs génitales chez la souris, suggérant qu'une telle immunothérapie pourrait adéquatement traiter des lésions dues à HPV chez les femmes. SUMMARY Cervical cancer is the second leading cause of cancer mortality in women worldwide and results from an infection with a subset of Human Papillomavirus (HPV), HPV 16 representing the most prevalent type. The available prophylactic vaccines are an effective strategy to prevent cervical cancer while already established high grade lesions usually require surgical ablation of lesion with possible additional treatments. Recurrence risks linked to conventional ablations and the high mortality (50%) related to cervical cancer demonstrate the need for alternative strategies like immunotherapies to target pre¬cancerous lesions. Until now, therapeutic vaccines only showed limited clinical results, which strongly contrast with the regression of ectopic tumors observed in the available murine HPV tumor models after vaccination. Induction of protective immune responses in the genital mucosa (GM) may be crucial for efficacy of HPV therapeutic vaccines and evaluating their efficacy in a murine model with genital HPV- tumors represents an important prerequisite for clinical trials. Thus, we have here established an orthotopic mouse model where tumors in the GM develop after an intravaginal (i.vag) instillation of HPV 16 E6/E7 oncogenes-expressing tumor cells transduced with a luciferase encoding lentivirus vector for in vivo imaging of tumor growth. Histological characterization showed that tumor grew within the vaginal epithelium and according to their mucosal location tumor- induced E7-specific CD8 Τ cells were restricted to the GM and genital draining lymph nodes together with high Τ regulatory cells infiltrates preventing spontaneous regression. Consequently, sharing several immunological similarities with natural genital HPV lesions, this novel genital tumor model may be more adequate to test therapeutic strategies. As E6 and/or E7 HPV oncogenes expression is required for the maintenance of the cancerous phenotype of cervical cells, they represent target antigens for therapeutic vaccination. We reported that mice subcutaneously (s.c.) immunized once with an adjuvanted HPV 16 E7 polypeptide vaccine harbored high E7-specific IFN-γ secreting CD8 Τ cells in their lymphoid organs and more importantly in the GM. In addition, the lack of correlation between specific responses measured in the periphery with those measured in the GM highlighted the necessity and relevance to determine the immune responses locally where HPV 16-induced lesions develop. Whether a mucosal route of immunization is better to treat/regress genital infections/tumors than parenteral immunization is still debated. Our data shows that although similar E7-specific IFN-γ secreting CD8 Τ cells responses were measured in the GM upon mucosal routes of E7 vaccine delivery (nasal and vaginal immunizations), only the s.c immunization was able to regress at least all genital tumors in mice. To further increase the vaccine-specific responses in the GM, immunostimulatory agents were i.vag administrated after vaccination. We demonstrated that a single i.vag application of toll like receptor (TLR) agonists after a s.c. E7 vaccination induced a significant increase of E7-specific IFN-γ secreting CD8 Τ cells in the GM. More precisely, regarding CpG and Poly l:C, the effect is most probably associated with a local attraction of total CD8 Τ cells and secondly depends on TLR9 and TLR3/Mda5 signaling pathways, respectively. Finally, this combinatorial strategy induced tumor regression in mice harboring large genital tumors, suggesting that such an immunotherapy could be adequate to treat HPV-induced lesions in women.
Resumo:
Hyperammonemia in neonates and infants affects brain development and causes mental retardation. We report that ammonium impaired cholinergic axonal growth and altered localization and phosphorylation of intermediate neurofilament protein in rat reaggregated brain cell primary cultures. This effect was restricted to the phase of early maturation but did not occur after synaptogenesis. Exposure to NH4Cl decreased intracellular creatine, phosphocreatine, and ADP. We demonstrate that creatine cotreatment protected axons from ammonium toxic effects, although this did not restore high-energy phosphates. The protection by creatine was glial cell-dependent. Our findings suggest that the means to efficiently sustain CNS creatine concentration in hyperammonemic neonates and infants should be assessed to prevent impairment of axonogenesis and irreversible brain damage.
Resumo:
Anabolic androgenic steroids (AAS) are doping agents that are mostly used for improvement of strength and muscle hypertrophy. In some sports, athletes reported that the intake of AAS is associated with a better recovery, a higher training load capacity and therefore an increase in physical and mental performances. The purpose of this study was to evaluate, the effect of multiple doses of AAS on different physiological parameters that could indirectly relate the physical state of athletes during a hard endurance training program. In a double blind settings, three groups (n = 9, 8 and 8) were orally administered placebo, testosterone undecanoate or 19-norandrostenedione, 12 times during 1 month. Serum biomarkers (creatine kinase, ASAT and urea), serum hormone profiles (testosterone, cortisol and LH) and urinary catecholamines (noradrenalin, adrenalin and dopamine) were evaluated during the treatment. Running performance was assessed before and after the intervention phase by means of a standardized treadmill test. None of the measured biochemical variables showed significant impact of AAS on physical stress level. Data from exercise testing on submaximal and maximal level did not reveal any performance differences between the three groups or their response to the treatment. In the present study, no effect of multiple oral doses of AAS on endurance performance or bioserum recovery markers was found.
Resumo:
Cyclooxygenase-2 (COX-2), a key enzyme in prostaglandin synthesis, is highly expressed during inflammation and cellular transformation and promotes tumor progression and angiogenesis. We have previously demonstrated that endothelial cell COX-2 is required for integrin alphaVbeta3-dependent activation of Rac-1 and Cdc-42 and for endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047; Dormond, O., Bezzi, M., Mariotti, A., and Ruegg, C. (2002) J. Biol. Chem. 277, 45838-45846). In this study, we addressed the question of whether integrin-mediated cell adhesion may regulate COX-2 expression in endothelial cells. We report that cell detachment from the substrate caused rapid degradation of COX-2 protein in human umbilical vein endothelial cells (HUVEC) independent of serum stimulation. This effect was prevented by broad inhibition of cellular proteinases and by neutralizing lysosomal activity but not by inhibiting the proteasome. HUVEC adhesion to laminin, collagen I, fibronectin, or vitronectin induced rapid COX-2 protein expression with peak levels reached within 2 h and increased COX-2-dependent prostaglandin E2 production. In contrast, nonspecific adhesion to poly-L-lysine was ineffective in inducing COX-2 expression. Furthermore, the addition of matrix proteins in solution promoted COX-2 protein expression in suspended or poly-L-lysine-attached HUVEC. Adhesion-induced COX-2 expression was strongly suppressed by pharmacological inhibition of c-Src, phosphatidylinositol 3-kinase, p38, extracellular-regulated kinase 1/2, and, to a lesser extent, protein kinase C and by the inhibition of mRNA or protein synthesis. In conclusion, this work demonstrates that integrin-mediated cell adhesion and soluble integrin ligands contribute to maintaining COX-2 steady-state levels in endothelial cells by the combined prevention of lysosomal-dependent degradation and the stimulation of mRNA synthesis involving multiple signaling pathways.
Resumo:
On June 26-27, 2006, 60 academic and industry scientists gathered during the PROSAFE workshop to discuss recommendations on taxonomy, antibiotic resistance, in vitro assessment of virulence and in vivo assessment of safety of probiotics used for human consumption. For identification of lactic acid bacteria (LAB) intended for probiotic use, it was recommended that conventional biochemical methods should be complemented with molecular methods and that these should be performed by an expert lab. Using the newly developed LAB Susceptibility test Medium (LSM), tentative epidemiological cut-off values were proposed. It was recommended that potentially probiotic strains not belonging to the wildtype distributions of relevant antimicrobials should not be developed as future products for human or animal consumption. Furthermore, it was recommended that the use of strains harbouring known and confirmed virulence genes should be avoided. Finally, for in vivo assessment of safety by investigating strain pathogenicity in animal models, the rat endocarditis model appeared to be the most reliable model tested in the PROSAFE project. Moreover, consensus was reached for approving the necessity of a human colonisation study in a randomised placebo-controlled double-blind design; however, further discussions are needed on the details of such as study.
Resumo:
The developing cardiovascular system is known to operate normally in a hypoxic environment. However, the functional and ultrastructural recovery of embryonic/fetal hearts subjected to anoxia lasting as long as hypoxia/ischemia performed in adult animal models remains to be investigated. Isolated spontaneously beating hearts from Hamburger-Hamilton developmental stages 14 (14HH), 20HH, 24HH, and 27HH chick embryos were subjected in vitro to 30 or 60 min of anoxia followed by 60 min of reoxygenation. Morphological alterations and apoptosis were assessed histologically and by transmission electron microscopy. Anoxia provoked an initial tachycardia followed by bradycardia leading to complete cardiac arrest, except for in the youngest heart, which kept beating. Complete atrioventricular block appeared after 9.4 +/- 1.1, 1.7 +/- 0.2, and 1.6 +/- 0.3 min at stages 20HH, 24HH, and 27HH, respectively. At reoxygenation, sinoatrial activity resumed first in the form of irregular bursts, and one-to-one atrioventricular conduction resumed after 8, 17, and 35 min at stages 20HH, 24HH, and 27HH, respectively. Ventricular shortening recovered within 30 min except at stage 27HH. After 60 min of anoxia, stage 27HH hearts did not retrieve their baseline activity. Whatever the stage and anoxia duration, nuclear and mitochondrial swelling observed at the end of anoxia were reversible with no apoptosis. Thus the embryonic heart is able to fully recover from anoxia/reoxygenation although its anoxic tolerance declines with age. Changes in cellular homeostatic mechanisms rather than in energy metabolism may account for these developmental variations.
Resumo:
The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiologic principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography. Approximately 10 y ago we provided experimental evidence that indicated a central role of glutamate signaling on astrocytes in neurometabolic coupling. The basic mechanism in neurometabolic coupling is the glutamate-stimulated aerobic glycolysis in astrocytes, such that the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na(+)-K(+) ATPase triggers glucose uptake and its glycolytic processing, which results in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fueling of the neuronal energy demands associated with synaptic transmission. Analyses of this coupling have been extended in vivo and have defined the methods of coupling for inhibitory neurotransmission as well as its spatial extent in relation to the propagation of metabolic signals within the astrocytic syncytium. On the basis of a large body of experimental evidence, we proposed an operational model, "the astrocyte-neuron lactate shuttle." A series of results obtained by independent laboratories have provided further support for this model. This body of evidence provides a molecular and cellular basis for interpreting data that are obtained with functional brain imaging studies.
Resumo:
Biodegradable microspheres may represent a potential tool for the delivery of combination vaccines. We demonstrate strong immunogenicity of five co-encapsulated antigens after a single subcutaneous inoculation in guinea pigs. Tetanus- and diphtheria-specific antibodies were not significantly affected by the presence of either antigen or by the presence of pertussis or Haemophilus influenzae type b (Hib) antigens. Microsphere formulations gave better protection against diphtheria toxin than did two injections of a licensed tetravalent vaccine. Finally, a synthetic malaria peptide antigen (PfCS) also encapsulated in PLGA microspheres increased diphtheria and tetanus-specific immunity and improved protection against diphtheria. These findings demonstrate the potential of microspheres as an alternative and promising strategy for combination vaccines with a further aptitude in reducing the number of inoculations required to gain functional immunity.
Resumo:
This study compares the effects of two short multiple-sprint exercise (MSE) (6 × 6 s) sessions with two different recovery durations (30 s or 180 s) on the slow component of oxygen uptake ([Formula: see text]O(2)) during subsequent high-intensity exercise. Ten male subjects performed a 6-min cycling test at 50% of the difference between the gas exchange threshold and [Formula: see text]O(2peak) (Δ50). Then, the subjects performed two MSEs of 6 × 6 s separated by two intersprint recoveries of 30 s (MSE(30)) and 180 s (MSE(180)), followed 10 min later by the Δ50 (Δ50(30) and Δ50(180), respectively). Electromyography (EMG) activities of the vastus medialis and lateralis were measured throughout each exercise bout. During MSE(30), muscle activity (root mean square) increased significantly (p ≤ 0.04), with a significant leftward-shifted median frequency of the power density spectrum (MDF; p ≤ 0.01), whereas MDF was significantly rightward-shifted during MSE(180) (p = 0.02). The mean [Formula: see text]O(2) value was significantly higher in MSE(30) than in MSE(180) (p < 0.001). During Δ50(30), [Formula: see text]O(2) and the deoxygenated hemoglobin ([HHb]) slow components were significantly reduced (-27%, p = 0.02, and -34%, p = 0.003, respectively) compared with Δ50. There were no significant modifications of the [Formula: see text]O(2) slow component in Δ50(180) compared with Δ50 (p = 0.32). The neuromuscular and metabolic adaptations during MSE(30) (preferential activation of type I muscle fibers evidenced by decreased MDF and a greater aerobic metabolism contribution to the required energy demands), but not during MSE(180), may lead to reduced [Formula: see text]O(2) and [HHb] slow components, suggesting an alteration in motor units recruitment profile (i.e., change in the type of muscle fibers recruited) and (or) an improved muscle O(2) delivery during subsequent exercise.