50 resultados para poly(methyl methacrylate)
Resumo:
Poly (ADP-ribose) polymerase 1 (PARP-1) is a constitutive enzyme, the major isoform of the PARP family, which is involved in the regulation of DNA repair, cell death, metabolism, and inflammatory responses. Pharmacological inhibitors of PARP provide significant therapeutic benefits in various preclinical disease models associated with tissue injury and inflammation. However, our understanding the role of PARP activation in the pathophysiology of liver inflammation and fibrosis is limited. In this study we investigated the role of PARP-1 in liver inflammation and fibrosis using acute and chronic models of carbon tetrachloride (CCl4 )-induced liver injury and fibrosis, a model of bile duct ligation (BDL)-induced hepatic fibrosis in vivo, and isolated liver-derived cells ex vivo. Pharmacological inhibition of PARP with structurally distinct inhibitors or genetic deletion of PARP-1 markedly attenuated CCl4 -induced hepatocyte death, inflammation, and fibrosis. Interestingly, the chronic CCl4 -induced liver injury was also characterized by mitochondrial dysfunction and dysregulation of numerous genes involved in metabolism. Most of these pathological changes were attenuated by PARP inhibitors. PARP inhibition not only prevented CCl4 -induced chronic liver inflammation and fibrosis, but was also able to reverse these pathological processes. PARP inhibitors also attenuated the development of BDL-induced hepatic fibrosis in mice. In liver biopsies of subjects with alcoholic or hepatitis B-induced cirrhosis, increased nitrative stress and PARP activation was noted. CONCLUSION: The reactive oxygen/nitrogen species-PARP pathway plays a pathogenetic role in the development of liver inflammation, metabolism, and fibrosis. PARP inhibitors are currently in clinical trials for oncological indications, and the current results indicate that liver inflammation and liver fibrosis may be additional clinical indications where PARP inhibition may be of translational potential.
Resumo:
The wound healing promoting effect of negative wound pressure therapies (NPWT) takes place at the wound interface. The use of bioactive substances at this site represents a major research area for the development of future NPWT therapies. To assess wound healing kinetics in pressure ulcers treated by NPWT with or without the use of a thin interface membrane consisting of poly-N-acetyl glucosamine nanofibers (sNAG) a prospective randomized clinical trial was performed. The safety of the combination of NPWT and sNAG was also assessed in patients treated with antiplatelet drugs. In the performed study, the combination of NPWT and sNAG in 10 patients compared to NPWT alone in 10 patients promoted wound healing due to an improved contraction of the wound margins (p = 0.05) without a change in wound epithelization. In 6 patients treated with antiplatelet drugs no increased wound bleeding was observed in patients treated by NPWT and sNAG. In conclusion, the application of thin membranes of sNAG nanofibers at the wound interface using NPWT was safe and augmented the action of NPWT leading to improved wound healing due to a stimulation of wound contraction.
Resumo:
The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micrometer size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal microcalorimetry also revealed that lower concentrations of daptomycin-loaded microparticles were required to completely inhibit the recovery of mature MRSA and S. epidermidis biofilms. Further characterization of the effect of daptomycin-loaded PCL microparticles on mature biofilms was performed by fluorescence in situ hybridization. Fluorescence in situ hybridization showed an important reduction in MRSA biofilm, whereas S. epidermidis biofilms, although inhibited, were not eradicated. In addition, an important attachment of the microparticles to MRSA and S. epidermidis biofilms was observed. Finally, all formulations proved to be biocompatible with both ISO compliant L929 fibroblasts and human MG63 osteoblast-like cells.
Resumo:
Biocompatibility is a requirement for the development of nanofibers for ophthalmic applications. In this study, nanofibers were elaborated using poly(ε-caprolactone) via electrospinning. The ocular biocompatibility of this material was investigated. MIO-M1 and ARPE-19 cell cultures were incubated with nanofibers and cellular responses were monitored by viability and morphology. The in vitro biocompatibility revealed that the nanofibers were not cytotoxic to the ocular cells. These cells exposed to the nanofibers proliferated and formed an organized monolayer. ARPE-19 and MIO-M1 cells were capable of expressing GFAP, respectively, demonstrating their functionality. Nanofibers were inserted into the vitreous cavity of the rat's eye for 10days and the in vivo biocompatibility was investigated using Optical Coherence Tomography (OCT), histology and measuring the expression of pro-inflammatory genes (IL-1β, TNF-α, VEGF and iNOS) (real-time PCR). The OCT and the histological analyzes exhibited the preserved architecture of the tissues of the eye. The biomaterial did not elicit an inflammatory reaction and pro-inflammatory cytokines were not expressed by the retinal cells, and the other posterior tissues of the eye. Results from the biocompatibility studies indicated that the nanofibers exhibited a high degree of cellular biocompatibility and short-term intraocular tolerance, indicating that they might be applied as drug carrier for ophthalmic use.