123 resultados para physiological strain
Resumo:
An active strain formulation for orthotropic constitutive laws arising in cardiac mechanics modeling is introduced and studied. The passive mechanical properties of the tissue are described by the Holzapfel-Ogden relation. In the active strain formulation, the Euler-Lagrange equations for minimizing the total energy are written in terms of active and passive deformation factors, where the active part is assumed to depend, at the cell level, on the electrodynamics and on the specific orientation of the cardiac cells. The well-posedness of the linear system derived from a generic Newton iteration of the original problem is analyzed and different mechanical activation functions are considered. In addition, the active strain formulation is compared with the classical active stress formulation from both numerical and modeling perspectives. Taylor-Hood and MINI finite elements are employed to discretize the mechanical problem. The results of several numerical experiments show that the proposed formulation is mathematically consistent and is able to represent the main key features of the phenomenon, while allowing savings in computational costs.
Resumo:
Physical damage and disease are known to lead to changes in the oxylipin signature of plants. We searched for oxylipins produced in response to both wounding and pathogenesis in Arabidopsis leaves. Linoleic acid 9- and 13-ketodienes (KODEs) were found to accumulate in wounded leaves as well as in leaves infected with the pathogen Pseudomonas syringae pv. tomato (Pst). Quantification of the compounds showed that they accumulated to higher levels during the hypersensitive response to Pst avrRpm1 than during infection with a Pst strain lacking an avirulence gene. KODEs are Michael addition acceptors, containing a chemically reactive alpha,beta-unsaturated carbonyl group. When infiltrated into leaves, KODEs were found to induce expression of the GST1 gene, but vital staining indicated that these compounds also damaged plant cells. Several molecules typical of lipid oxidation, including malonaldehyde, also contain the alpha,beta-unsaturated carbonyl reactivity feature, and, when delivered in a volatile form, powerfully induced the expression of GST1. The results draw attention to the potential physiological importance of naturally occurring Michael addition acceptors in plants. In particular, these compounds could act directly, or indirectly via cell damage, as powerful gene activators and might also contribute to host cell death.
Resumo:
BACKGROUND: Ethiopia ranks seventh in the list of 22 high tuberculosis (TB) burden countries, with an incidence rate of 379 cases per 100 000 population for TB all forms. However, information on the genomic diversity of Mycobacterium tuberculosis in Ethiopia is limited. OBJECTIVE: To investigate the molecular characteristics of M. tuberculosis strains implicated in pulmonary TB in the study area. METHODS AND RESULTS: A cross-sectional study was conducted using socio-demographic, clinical and culture data combined with molecular typing analysis. The proportion of TB and M. tuberculosis isolates was not associated with risk factors (P > 0.05). Of 99 sputum samples, 80.8% were culture-positive. Speciation of isolates showed that 88.8% were M. tuberculosis. Further characterisation led to the identification of 27 different spoligotype patterns of M. tuberculosis; the most dominant shared types were SIT149, SIT53 and SIT54. Of the 27 strains, three strains were new and were reported to the SITVIT database. More than two thirds of the strains belonged to the Euro-American lineage. CONCLUSION: This study shows the presence of several clusters and new strains of M. tuberculosis circulating in pulmonary TB patients in the study area, suggesting recent transmission. Nationwide studies are recommended to map the population structure of M. tuberculosis and set control measures.
Resumo:
Genetic background, prenatal and post-natal early-life conditions influence the development of interconnected physiological systems and thereby shape the phenotype. Certain combinations of genotypes and pre- and post-natal conditions may provide higher fitness in a specific environmental context. Here, we investigated how grey partridges Perdix perdix of two strains (wild and domesticated) cope physiologically with pre- and post-natal predictable vs. unpredictable food supply. Food unpredictability occurs frequently in wild environments and requires physiological and behavioural adjustments. Well-orchestrated and efficient physiological systems are presumably more vital in a wild environment as compared to captivity. We thus predicted that wild-strain grey partridges have a stronger immunity, glucocorticoid (GC) stress response and oxidative stress resistance (OSR) than domesticated birds, which have undergone adaptations to captivity. We also predicted that wild-strain birds react more strongly to environmental stimuli and, when faced with harsh prenatal conditions, are better able to prepare their offspring for similarly poor post-natal conditions than birds of domesticated origin. We found that wild-strain offspring were physiologically better prepared for stressful situations as compared to the domesticated strain. They had a high GC stress response and a high OSR when kept under predictable food supply. Wild-strain parents reacted to prenatal unpredictable food supply by lowering their offspring's GC stress response, which potentially lowered GC-induced oxidative pressure. No such pattern was evident in the domesticated birds. Irrespective of strain and prenatal feeding scheme, post-natal unpredictable food supply boosted immune indices, and GC stress response was negatively related to antibody response in females and to mitochondrial superoxide production. Wild-strain grey partridge showed fitness-relevant physiological advantages and appeared to prepare their offspring for the prospective environment. Negative relationships between GC stress response, immunity and oxidative indices imply a pivotal role of an organism's oxidative balance and support the importance of considering multiple physiological systems simultaneously.
Resumo:
Childhood obesity and physical inactivity are increasing dramatically worldwide. Children of low socioeconomic status and/or children of migrant background are especially at risk. In general, the overall effectiveness of school-based programs on health-related outcomes has been disappointing. A special gap exists for younger children and in high risk groups. This paper describes the rationale, design, curriculum, and evaluation of a multicenter preschool randomized intervention study conducted in areas with a high migrant population in two out of 26 Swiss cantons. Twenty preschool classes in the German (canton St. Gallen) and another 20 in the French (canton Vaud) part of Switzerland were separately selected and randomized to an intervention and a control arm by the use of opaque envelopes. The multidisciplinary lifestyle intervention aimed to increase physical activity and sleep duration, to reinforce healthy nutrition and eating behaviour, and to reduce media use. According to the ecological model, it included children, their parents and the teachers. The regular teachers performed the majority of the intervention and were supported by a local health promoter. The intervention included physical activity lessons, adaptation of the built infrastructure; promotion of regional extracurricular physical activity; playful lessons about nutrition, media use and sleep, funny homework cards and information materials for teachers and parents. It lasted one school year. Baseline and post-intervention evaluations were performed in both arms. Primary outcome measures included BMI and aerobic fitness (20 m shuttle run test). Secondary outcomes included total (skinfolds, bioelectrical impedance) and central (waist circumference) body fat, motor abilities (obstacle course, static and dynamic balance), physical activity and sleep duration (accelerometry and questionnaires), nutritional behaviour and food intake, media use, quality of life and signs of hyperactivity (questionnaires), attention and spatial working memory ability (two validated tests). Researchers were blinded to group allocation. The purpose of this paper is to outline the design of a school-based multicenter cluster randomized, controlled trial aiming to reduce body mass index and to increase aerobic fitness in preschool children in culturally different parts of Switzerland with a high migrant population. Trial Registration: (clinicaltrials.gov) NCT00674544.
Resumo:
The Helvetic nappe system in Western Switzerland is a stack of fold nappes and thrust sheets em-placed at low grade metamorphism. Fold nappes and thrust sheets are also some of the most common features in orogens. Fold nappes are kilometer scaled recumbent folds which feature a weakly deformed normal limb and an intensely deformed overturned limb. Thrust sheets on the other hand are characterized by the absence of overturned limb and can be defined as almost rigid blocks of crust that are displaced sub-horizontally over up to several tens of kilometers. The Morcles and Doldenhom nappe are classic examples of fold nappes and constitute the so-called infra-Helvetic complex in Western and Central Switzerland, respectively. This complex is overridden by thrust sheets such as the Diablerets and Wildhörn nappes in Western Switzerland. One of the most famous example of thrust sheets worldwide is the Glariis thrust sheet in Central Switzerland which features over 35 kilometers of thrusting which are accommodated by a ~1 m thick shear zone. Since the works of the early Alpine geologist such as Heim and Lugeon, the knowledge of these nappes has been steadily refined and today the geometry and kinematics of the Helvetic nappe system is generally agreed upon. However, despite the extensive knowledge we have today of the kinematics of fold nappes and thrust sheets, the mechanical process leading to the emplacement of these nappe is still poorly understood. For a long time geologist were facing the so-called 'mechanical paradox' which arises from the fact that a block of rock several kilometers high and tens of kilometers long (i.e. nappe) would break internally rather than start moving on a low angle plane. Several solutions were proposed to solve this apparent paradox. Certainly the most successful is the theory of critical wedges (e.g. Chappie 1978; Dahlen, 1984). In this theory the orogen is considered as a whole and this change of scale allows thrust sheet like structures to form while being consistent with mechanics. However this theoiy is intricately linked to brittle rheology and fold nappes, which are inherently ductile structures, cannot be created in these models. When considering the problem of nappe emplacement from the perspective of ductile rheology the problem of strain localization arises. The aim of this thesis was to develop and apply models based on continuum mechanics and integrating heat transfer to understand the emplacement of nappes. Models were solved either analytically or numerically. In the first two papers of this thesis we derived a simple model which describes channel flow in a homogeneous material with temperature dependent viscosity. We applied this model to the Morcles fold nappe and to several kilometer-scale shear zones worldwide. In the last paper we zoomed out and studied the tectonics of (i) ductile and (ii) visco-elasto-plastic and temperature dependent wedges. In this last paper we focused on the relationship between basement and cover deformation. We demonstrated that during the compression of a ductile passive margin both fold nappes and thrust sheets can develop and that these apparently different structures constitute two end-members of a single structure (i.e. nappe). The transition from fold nappe to thrust sheet is to first order controlled by the deformation of the basement. -- Le système des nappes helvétiques en Suisse occidentale est un empilement de nappes de plis et de nappes de charriage qui se sont mis en place à faible grade métamorphique. Les nappes de plis et les nappes de charriage sont parmi les objets géologiques les plus communs dans les orogènes. Les nappes de plis sont des plis couchés d'échelle kilométrique caractérisés par un flanc normal faiblement défor-mé, au contraire de leur flanc inverse, intensément déformé. Les nappes de charriage, à l'inverse se caractérisent par l'absence d'un flanc inverse bien défini. Elles peuvent être définies comme des blocs de croûte terrestre qui se déplacent de manière presque rigide qui sont déplacés sub-horizontalement jusqu'à plusieurs dizaines de kilomètres. La nappe de Mordes et la nappe du Doldenhorn sont des exemples classiques de nappes de plis et constitue le complexe infra-helvétique en Suisse occidentale et centrale, respectivement. Ce complexe repose sous des nappes de charriages telles les nappes des Diablerets et du Widlhörn en Suisse occidentale. La nappe du Glariis en Suisse centrale se distingue par un déplacement de plus de 35 kilomètres qui s'est effectué à la faveur d'une zone de cisaillement basale épaisse de seulement 1 mètre. Aujourd'hui la géométrie et la cinématique des nappes alpines fait l'objet d'un consensus général. Malgré cela, les processus mécaniques par lesquels ces nappes se sont mises en place restent mal compris. Pendant toute la première moitié du vingtième siècle les géologues les géologues ont été confrontés au «paradoxe mécanique». Celui-ci survient du fait qu'un bloc de roche haut de plusieurs kilomètres et long de plusieurs dizaines de kilomètres (i.e., une nappe) se fracturera de l'intérieur plutôt que de se déplacer sur une surface frictionnelle. Plusieurs solutions ont été proposées pour contourner cet apparent paradoxe. La solution la plus populaire est la théorie des prismes d'accrétion critiques (par exemple Chappie, 1978 ; Dahlen, 1984). Dans le cadre de cette théorie l'orogène est considéré dans son ensemble et ce simple changement d'échelle solutionne le paradoxe mécanique (la fracturation interne de l'orogène correspond aux nappes). Cette théorie est étroitement lié à la rhéologie cassante et par conséquent des nappes de plis ne peuvent pas créer au sein d'un prisme critique. Le but de cette thèse était de développer et d'appliquer des modèles basés sur la théorie de la méca-nique des milieux continus et sur les transferts de chaleur pour comprendre l'emplacement des nappes. Ces modèles ont été solutionnés de manière analytique ou numérique. Dans les deux premiers articles présentés dans ce mémoire nous avons dérivé un modèle d'écoulement dans un chenal d'un matériel homogène dont la viscosité dépend de la température. Nous avons appliqué ce modèle à la nappe de Mordes et à plusieurs zone de cisaillement d'échelle kilométrique provenant de différents orogènes a travers le monde. Dans le dernier article nous avons considéré le problème à l'échelle de l'orogène et avons étudié la tectonique de prismes (i) ductiles, et (ii) visco-élasto-plastiques en considérant les transferts de chaleur. Nous avons démontré que durant la compression d'une marge passive ductile, a la fois des nappes de plis et des nappes de charriages peuvent se développer. Nous avons aussi démontré que nappes de plis et de charriages sont deux cas extrêmes d'une même structure (i.e. nappe) La transition entre le développement d'une nappe de pli ou d'une nappe de charriage est contrôlé au premier ordre par la déformation du socle. -- Le système des nappes helvétiques en Suisse occidentale est un emblement de nappes de plis et de nappes de chaînage qui se sont mis en place à faible grade métamoiphique. Les nappes de plis et les nappes de charriage sont parmi les objets géologiques les plus communs dans les orogènes. Les nappes de plis sont des plis couchés d'échelle kilométrique caractérisés par un flanc normal faiblement déformé, au contraire de leur flanc inverse, intensément déformé. Les nappes de charriage, à l'inverse se caractérisent par l'absence d'un flanc inverse bien défini. Elles peuvent être définies comme des blocs de croûte terrestre qui se déplacent de manière presque rigide qui sont déplacés sub-horizontalement jusqu'à plusieurs dizaines de kilomètres. La nappe de Morcles and la nappe du Doldenhorn sont des exemples classiques de nappes de plis et constitue le complexe infra-helvétique en Suisse occidentale et centrale, respectivement. Ce complexe repose sous des nappes de charriages telles les nappes des Diablerets et du Widlhörn en Suisse occidentale. La nappe du Glarüs en Suisse centrale est certainement l'exemple de nappe de charriage le plus célèbre au monde. Elle se distingue par un déplacement de plus de 35 kilomètres qui s'est effectué à la faveur d'une zone de cisaillement basale épaisse de seulement 1 mètre. La géométrie et la cinématique des nappes alpines fait l'objet d'un consensus général parmi les géologues. Au contraire les processus physiques par lesquels ces nappes sont mises en place reste mal compris. Les sédiments qui forment les nappes alpines se sont déposés à l'ère secondaire et à l'ère tertiaire sur le socle de la marge européenne qui a été étiré durant l'ouverture de l'océan Téthys. Lors de la fermeture de la Téthys, qui donnera naissance aux Alpes, le socle et les sédiments de la marge européenne ont été déformés pour former les nappes alpines. Le but de cette thèse était de développer et d'appliquer des modèles basés sur la théorie de la mécanique des milieux continus et sur les transferts de chaleur pour comprendre l'emplacement des nappes. Ces modèles ont été solutionnés de manière analytique ou numérique. Dans les deux premiers articles présentés dans ce mémoire nous nous sommes intéressés à la localisation de la déformation à l'échelle d'une nappe. Nous avons appliqué le modèle développé à la nappe de Morcles et à plusieurs zones de cisaillement provenant de différents orogènes à travers le monde. Dans le dernier article nous avons étudié la relation entre la déformation du socle et la défonnation des sédiments. Nous avons démontré que nappe de plis et nappes de charriages constituent les cas extrêmes d'un continuum. La transition entre nappe de pli et nappe de charriage est intrinsèquement lié à la déformation du socle sur lequel les sédiments reposent.
Resumo:
ABSTRACT Production of the polyketide antimicrobial metabolite 2,4-diacetyl-phloroglucinol (DAPG) is a key factor in the biocontrol activity of Pseudomonas fluorescens CHA0. Strain CHA0 carrying a translational phlA'-'lacZ fusion was used to monitor expression of the phl biosynthetic genes in vitro and in the rhizosphere. Expression of the reporter gene accurately reflected actual production of DAPG in vitro and in planta as determined by direct extraction of the antimicrobial compound. In a gnotobiotic system containing a clay and sand-based artificial soil, reporter gene expression was significantly greater in the rhizospheres of two monocots (maize and wheat) compared with gene expression in the rhizospheres of two dicots (bean and cucumber). We observed this host genotype effect on bacterial gene expression also at the level of cultivars. Significant differences were found among six additional maize cultivars tested under gnotobiotic conditions. There was no difference between transgenic maize expressing the Bacillus thuringiensis insecticidal gene cry1Ab and the near-isogenic parent line. Plant age had a significant impact on gene expression. Using maize as a model, expression of the phlA'-'lacZ reporter gene peaked at 24 h after planting of pregerminated seedlings, and dropped to a fourth of that value within 48 h, remaining at that level throughout 22 days of plant growth. Root infection by Pythium ultimum stimulated bacterial gene expression on both cucumber and maize, and this was independent of differences in rhizosphere colonization on these host plants. To our knowledge, this is the first comprehensive evaluation of how biotic factors that commonly confront bacterial inoculants in agricultural systems (host genotype, host age, and pathogen infection) modulate the expression of key biocontrol genes for disease suppression.
Resumo:
Catecholamines and alpha(1)-adrenergic receptors (alpha(1)-ARs) cause cardiac hypertrophy in cultured myocytes and transgenic mice, but heart size is normal in single KOs of the main alpha(1)-AR subtypes, alpha(1A/C) and alpha(1B). Here we tested whether alpha(1)-ARs are required for developmental cardiac hypertrophy by generating alpha(1A/C) and alpha(1B) double KO (ABKO) mice, which had no cardiac alpha(1)-AR binding. In male ABKO mice, heart growth after weaning was 40% less than in WT, and the smaller heart was due to smaller myocytes. Body and other organ weights were unchanged, indicating a specific effect on the heart. Blood pressure in ABKO mice was the same as in WT, showing that the smaller heart was not due to decreased load. Contractile function was normal by echocardiography in awake mice, but the smaller heart and a slower heart rate reduced cardiac output. alpha(1)-AR stimulation did not activate extracellular signal-regulated kinase (Erk) and downstream kinases in ABKO myocytes, and basal Erk activity was lower in the intact ABKO heart. In female ABKO mice, heart size was normal, even after ovariectomy. Male ABKO mice had reduced exercise capacity and increased mortality with pressure overload. Thus, alpha(1)-ARs in male mice are required for the physiological hypertrophy of normal postnatal cardiac development and for an adaptive response to cardiac stress.
Resumo:
A variety of stress situations may affect the activity and survival of plant-beneficial pseudomonads added to soil to control root diseases. This study focused on the roles of the sigma factor AlgU (synonyms, AlgT, RpoE, and sigma(22)) and the anti-sigma factor MucA in stress adaptation of the biocontrol agent Pseudomonas fluorescens CHA0. The algU-mucA-mucB gene cluster of strain CHA0 was similar to that of the pathogens Pseudomonas aeruginosa and Pseudomonas syringae. Strain CHA0 is naturally nonmucoid, whereas a mucA deletion mutant or algU-overexpressing strains were highly mucoid due to exopolysaccharide overproduction. Mucoidy strictly depended on the global regulator GacA. An algU deletion mutant was significantly more sensitive to osmotic stress than the wild-type CHA0 strain and the mucA mutant were. Expression of an algU'-'lacZ reporter fusion was induced severalfold in the wild type and in the mucA mutant upon exposure to osmotic stress, whereas a lower, noninducible level of expression was observed in the algU mutant. Overexpression of algU did not enhance tolerance towards osmotic stress. AlgU was found to be essential for tolerance of P. fluorescens towards desiccation stress in a sterile vermiculite-sand mixture and in a natural sandy loam soil. The size of the population of the algU mutant declined much more rapidly than the size of the wild-type population at soil water contents below 5%. In contrast to its role in pathogenic pseudomonads, AlgU did not contribute to tolerance of P. fluorescens towards oxidative and heat stress. In conclusion, AlgU is a crucial determinant in the adaptation of P. fluorescens to dry conditions and hyperosmolarity, two major stress factors that limit bacterial survival in the environment.
Resumo:
AIMS: To assess the impact of the biocontrol strain Pseudomonas fluorescens CHA0 on a collection of barley rhizosphere bacteria using an agar plate inhibition assay and a plant microcosm, focusing on a CHA0-sensitive member of the Cytophaga-like bacteria (CLB). METHODS AND RESULTS: The effect of strain CHA0 on a collection of barley rhizosphere bacteria, in particular CLB and fluorescent pseudomonads sampled during a growth season, was assessed by a growth inhibition assay. On average, 85% of the bacteria were sensitive in the May sample, while the effect was reduced to around 68% in the July and August samples. In the May sample, around 95% of the CLB and around 45% of the fluorescent pseudomonads were sensitive to strain CHA0. The proportion of CHA0-sensitive CLB and fluorescent pseudomonad isolates decreased during the plant growth season, i.e. in the July and August samples. A particularly sensitive CLB isolate, CLB23, was selected, exposed to strain CHA0 (wild type) and its genetically modified derivatives in the rhizosphere of barley grown in gnotobiotic soil microcosms. Two dry-stress periods were imposed during the experiment. Derivatives of strain CHA0 included antibiotic or exopolysaccharide (EPS) overproducing strains and a dry-stress-sensitive mutant. Despite their inhibitory activity against CLB23 in vitro, neither wild-type strain CHA0, nor any of its derivatives, had a major effect on culturable and total cell numbers of CLB23 during the 23-day microcosm experiment. Populations of all inoculants declined during the two dry-stress periods, with soil water contents below 5% and plants reaching the wilting point, but they recovered after re-wetting the soil. Survival of the dry-stress-sensitive mutant of CHA0 was most affected by the dry periods; however, this did not result in an increased population density of CLB23. CONCLUSIONS: CLB comprise a large fraction of barley rhizosphere bacteria that are sensitive to the biocontrol pseudomonad CHA0 in vitro. However, in plant microcosm experiments with varying soil humidity conditions, CHA0 or its derivatives had no major impact on the survival of the highly sensitive CLB strain, CLB23, during two dry-stress periods and a re-wetting period; all co-existed well in the rhizosphere of barley plants. SIGNIFICANCE AND IMPACT OF THE STUDY: Results indicate a lack of interaction between the biocontrol pseudomonad CHA0 and a sensitive CLB when the complexity increases from agar plate assays to plant microcosm experiments. This suggests the occurrence of low levels of antibiotic production and/or that the two bacterial genera occupy different niches in the rhizosphere.
Resumo:
From a collection of yeast isolates isolated from patients in Tunisian hospitals between September 2006 and July 2010, the yeast strain JEY63 (CBS 12513), isolated from a 50-year-old male that suffered from oral thrush, could not be identified to the species level using conventional methods used in clinical laboratories. These methods include matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), germ tube formation, and the use of CHROMagar Candida and metabolic galleries. Sequence analysis of the nuclear rRNA (18S rRNA, 5.8S rRNA, and 26S rRNA) and internal transcribed spacer regions (ITS1 and ITS2) indicated that the ribosomal DNA sequences of this species were not yet reported. Multiple gene phylogenic analyses suggested that this isolate clustered at the base of the Dipodascaceae (Saccharomycetales, Saccharomycetes, and Ascomycota). JEY63 was named Candida tunisiensis sp. nov. according to several phenotypic criteria and its geographical origin. C. tunisiensis was able to grow at 42°C and does not form chlamydospores and hyphae but could grow as yeast and pseudohyphal forms. C. tunisiensis exhibited most probably a haploid genome with an estimated size of 10 Mb on at least three chromosomes. Using European Committee for Antimicrobial Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards Institute (CLSI) Candida albicans susceptibility breakpoints as a reference, C. tunisiensis was resistant to fluconazole (MIC = 8 μg/ml), voriconazole (MIC = 0.5 μg/ml), itraconazole (MIC = 16 μg/ml), and amphotericin B (MIC = 4 μg/ml) but still susceptible to posaconazole (MIC = 0.008 μg/ml) and caspofungin (MIC = 0.5 μg/ml). In conclusion, MALDI-TOF MS permitted the early selection of an unusual isolate, which was still unreported in molecular databases but could not be unambiguously classified based on phylogenetic approaches.
Resumo:
Certain fluorescent pseudomonads can protect plants from soil-borne pathogens, and it is important to understand how these biocontrol agents survive in soil. The persistence of the biocontrol strain Pseudomonas fluorescens CHA0-Rif under plough pan conditions was assessed in non-sterile soil microcosms by counting total cells (immunofluorescence microscopy), intact cells (BacLight membrane permeability test), viable cells (Kogure's substrate-responsiveness test) and culturable cells (colony counts on selective plates) of the inoculant. Viable but non-culturable cells of CHA0-Rif (106 cells g-1 soil) were found in flooded microcosms amended with fermentable organic matter, in which the soil redox potential was low (plough pan conditions), in agreement with previous observations of plough pan samples from a field inoculated with CHA0-Rif. However, viable but non-culturable cells were not found in unamended flooded, amended unflooded or unamended unflooded (i.e. control) microcosms, suggesting that such cells resulted from exposure of CHA0-Rif to a combination of low redox potential and oxygen limitation in soil. CHA0-Rif is strictly aerobic. Its anaerobic regulator ANR is activated by low oxygen concentrations and it controls production of the biocontrol metabolite hydrogen cyanide under microaerophilic conditions. Under plough pan conditions, an anr-deficient mutant of CHA0-Rif and its complemented derivative displayed the same persistence pattern as CHA0-Rif, indicating that anr was not implicated in the formation of viable but non-culturable cells of this strain at the plough pan.
Resumo:
In the plant-beneficial soil bacterium Pseudomonas fluorescens CHA0, the production of biocontrol factors (antifungal secondary metabolites and exoenzymes) is controlled at a posttranscriptional level by the GacS/GacA signal transduction pathway involving RNA-binding protein RsmA as a key regulatory element. This protein is assumed to bind to the ribosome-binding site of target mRNAs and to block their translation. RsmA-mediated repression is relieved at the end of exponential growth by two GacS/GacA-controlled regulatory RNAs RsmY and RsmZ, which bind and sequester the RsmA protein. A gene (rsmE) encoding a 64-amino-acid RsmA homolog was identified and characterized in strain CHA0. Overexpression of rsmE strongly reduced the expression of target genes (hcnA, for a hydrogen cyanide synthase subunit; aprA, for the main exoprotease; and phlA, for a component of 2,4-diacetylphloroglucinol biosynthesis). Single null mutations in either rsmA or rsmE resulted in a slight increase in the expression of hcnA, aprA, and phlA. By contrast, an rsmA rsmE double mutation led to strongly increased and advanced expression of these target genes and completely suppressed a gacS mutation. Both the RsmE and RsmA levels increased with increasing cell population densities in strain CHA0; however, the amount of RsmA showed less variability during growth. Expression of rsmE was controlled positively by GacA and negatively by RsmA and RsmE. Mobility shift assays demonstrated specific binding of RsmE to RsmY and RsmZ RNAs. The transcription and stability of both regulatory RNAs were strongly reduced in the rsmA rsmE double mutant. In conclusion, RsmA and RsmE together account for maximal repression in the GacS/GacA cascade of strain CHA0.