130 resultados para phosphate buffer capacity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A protein from Arabidopsis thaliana (L.) Heynh. showing homology to animal proteins of the NaPi-1 family, involved in the transport of inorganic phosphate, chloride, glutamate and sialic acid, has been characterized. This protein, named ANTR2 (for anion transporters) was shown by chloroplast subfractionation to be localized to the plastid inner envelope in both A. thaliana and Spinacia oleracea (L.). Immunolocalization revealed that ANTR2 was expressed in the leaf mesophyll cells as well as in the developing embryo at the upturned-U stage. Five additional homologues of ANTR2 are found in the Arabidopsis genome, of which one was shown by green fluorescent protein (GFP) fusion to be also located in the chloroplast. All ANTR proteins share homology to the animal NaPi-1 family, as well as to other organic-anion transporters that are members of the Anion:Cation Symporter (ACS) family, and share the main features of transporters from this family, including the presence of 12 putative transmembrane domains and of a 7-amino acid motif in the fourth putative transmembrane domain. ANTR2 thus represent a novel protein of the plastid inner envelope that is likely to be involved in anion transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 65 year old alcoholic man was hospitalized because he was tired, hypotonic, with postural tremor. The neurologic symptoms increased during the first two days despite an adequate therapy for alcoholic weaning with hydratation, benzodiazepines and vitamins. A severe hypophosphatemia is diagnosed, associated with hypovitaminosis D, mild hypomagnesemia, mild hypokaliemia and a refeeding syndrome. 24 hours after the normalisation of his phosphatemia, the neurologic symptoms are adjusted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rat 1 fibroblasts transfected to express either the wild-type hamster alpha 1B-adrenergic receptor or a constitutively active mutant (CAM) form of this receptor resulting from the alteration of amino acid residues 288-294 to encode the equivalent region of the human beta 2-adrenergic receptor were examined. The basal level of inositol phosphate generation in cells expressing the CAM alpha 1B-adrenergic receptor was greater than for the wild-type receptor, The addition of maximally effective concentrations of phenylephrine or noradrenaline resulted in substantially greater levels of inositol phosphate generation by the CAM alpha 1B-adrenergic receptor, although this receptor was expressed at lower steady-state levels than the wild-type receptor. The potency of both phenylephrine and noradrenaline to stimulate inositol phosphate production was approx. 200-fold greater at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. In contrast, endothelin 1, acting at the endogenously expressed endothelin ETA, receptor, displayed similar potency and maximal effects in the two cell lines. The sustained presence of phenylephrine resulted in down-regulation of the alpha subunits of the phosphoinositidase C-linked, pertussis toxin-insensitive, G-proteins G9 and G11 in cells expressing either the wild-type or the CAM alpha 1B-adrenergic receptor. The degree of down-regulation achieved was substantially greater in cells expressing the CAM alpha 1B-adrenergic receptor at all concentrations of the agonist. However, in this assay phenylephrine displayed only a slightly greater potency at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. There were no detectable differences in the basal rate of G9 alpha/G11 alpha degradation between cells expressing the wild-type or the CAMalpha 1B-adrenergic receptor. In both cell lines the addition of phenylephrine substantially increased the rate of degradation of these G-proteins, with a greater effect at the CAM alpha 1B-adrenergic receptor. The enhanced capacity of agonist both to stimulate second-messenger production at the CAM alpha 1B-adrenergic receptor and to regulate cellular levels of its associated G-proteins by stimulating their rate of degradation is indicative of an enhanced stoichiometry of coupling of this form of the receptor to G9 and G11.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Glutathione (GSH), a major cellular redox regulator and antioxidant, is decreased in cerebrospinal fluid and prefrontal cortex of schizophrenia patients. The gene of the key GSH-synthesizing enzyme, glutamate-cysteine ligase, modifier (GCLM) subunit, is associated with schizophrenia, suggesting that the deficit in the GSH system is of genetic origin. Using the GCLM knock-out (KO) mouse as model system with 60% decreased brain GSH levels and, thus, strong vulnerability to oxidative stress, we have shown that GSH dysregulation results in abnormal mouse brain morphology (e.g., reduced parvalbumin, PV, immuno-reactivity in frontal areas) and function. Additional oxidative stress, induced by GBR12909 (a dopamine re-uptake inhibitor), enhances morphological changes even further. Aim: In the present study we use the GCLM KO mouse model system, asking now, whether GSH dysregulation also compromises mouse behaviour and cognition. Methods: Male and female wildtype (WT) and GCLM-KO mice are treated with GBR12909 or phosphate buffered saline (PBS) from postnatal day (P) 5 to 10, and are behaviourally tested at P 60 and older. Results: In comparison to WT, KO animals of both sexes are hyperactive in the open field, display more frequent open arm entries on the elevated plus maze, longer float latencies in the Porsolt swim test, and more frequent contacts of novel and familiar objects. Contrary to other reports of animal models with reduced PV immuno-reactivity, GCLM-KO mice display normal rule learning capacity and perform normally on a spatial recognition task. GCLM-KO mice do, however, show a strong deficit in object-recognition after a 15 minutes retention delay. GBR12909 treatment exerts no additional effect. Conclusions: The results suggest that animals with impaired regulation of brain oxidative stress are impulsive and have reduced behavioural control in novel, unpredictable contexts. Moreover, GSH dysregulation seems to induce a selective attentional or stimulus-encoding deficit: despite intensive object exploration, GCLM-KO mice cannot discriminate between novel and familiar objects. In conclusion, the present data indicate that GSH dysregulation may contribute to the manifestation of behavioural and cognitive anomalies that are associated with schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graft-versus-host disease (GVHD) is the main complication after allogeneic bone marrow transplantation. Although the tissue damage and subsequent patient mortality are clearly dependent on T lymphocytes present in the grafted inoculum, the lethal effector molecules are unknown. Here, we show that acute lethal GVHD, induced by the transfer of splenocytes from C57BL/6 mice into sensitive BALB/c recipients, is dependent on both perforin and Fas ligand (FasL)-mediated lytic pathways. When spleen cells from mutant mice lacking both effector molecules were transferred to sublethally irradiated allogeneic recipients, mice survived. Delayed mortality was observed with grafted cells deficient in only one lytic mediator. In contrast, protection from lethal acute GVHD in resistant mice was exclusively perforin dependent. Perforin-FasL-deficient T cells failed to lyse most target cells in vitro. However, they still efficiently killed tumor necrosis factor alpha-sensitive fibroblasts, demonstrating that cytotoxic T cells possess a third lytic pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relative cognitive impairments are common along the schizophrenia spectrum reflecting potential psychopathological markers. Yet stress, a vulnerability marker in schizophrenia (including its spectrum), is likewise related to cognitive impairments. We investigated whether one such cognitive marker (attenuated functional hemispheric asymmetry) during stressful life periods might be linked to individuals' schizotypal features or rather to individuals' stress-related experiences and behaviours. A total of 58 students performed a left hemisphere dominant (lateralised lexical decisions) and right hemisphere dominant (sex decisions on composite faces) task. In order to account for individual differences in stress sensitivity we separated participants into groups of high or low cognitive reserve according to their average current marks. In addition, participants filled in questionnaires on schizotypy (short O-LIFE), perceived stress, stress response, and a newly adapted questionnaire that enquired about potential stress compensation behaviour (elevated substance use). The most important finding was that enhanced substance use and cognitive disorganisation contributed to a right and left hemisphere shift in language dominance, respectively. We discuss that (i) former reports on right hemisphere shifts in language dominance with positive schizotypy might be explained by an associated higher substance use and (ii) cognitive disorganisation relates to unstable cognitive functioning that depend on individuals' life circumstances, contributing to published reports on inconsistent laterality-schizotypy relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basic calcium phosphate (BCP) crystals are associated with severe osteoarthritis and acute periarticular inflammation. Three main forms of BCP crystals have been identified from pathological tissues: octacalcium phosphate, carbonate-substituted apatite, and hydroxyapatite. We investigated the proinflammatory effects of these BCP crystals in vitro with special regard to the involvement of the NLRP3-inflammasome in THP-1 cells, primary human monocytes and macrophages, and mouse bone marrow-derived macrophages (BMDM). THP-1 cells stimulated with BCP crystals produced IL-1β in a dose-dependent manner. Similarly, primary human cells and BMDM from wild-type mice also produced high concentrations of IL-1β after crystal stimulation. THP-1 cells transfected with short hairpin RNA against the components of the NLRP3 inflammasome and mouse BMDM from mice deficient for NLRP3, apoptosis-associated speck-like protein, or caspase-1 did not produce IL-1β after BCP crystal stimulation. BCP crystals induced macrophage apoptosis/necrosis as demonstrated by MTT and flow cytometric analysis. Collectively, these results demonstrate that BCP crystals induce IL-1β secretion through activating the NLRP3 inflammasome. Furthermore, we speculate that IL-1 blockade could be a novel strategy to inhibit BCP-induced inflammation in human disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cDNA encoding the NH2-terminal 589 amino acids of the extracellular domain of the human polymeric immunoglobulin receptor was inserted into transfer vectors to generate recombinant baculo- and vaccinia viruses. Following infection of insect and mammalian cells, respectively, the resulting truncated protein corresponding to human secretory component (hSC) was secreted with high efficiency into serum-free culture medium. The Sf9 insect cell/baculovirus system yielded as much as 50 mg of hSC/liter of culture, while the mammalian cells/vaccinia virus system produced up to 10 mg of protein/liter. The M(r) of recombinant hSC varied depending on the cell line in which it was expressed (70,000 in Sf9 cells and 85-95,000 in CV-1, TK- 143B and HeLa). These variations in M(r) resulted from different glycosylation patterns, as evidenced by endoglycosidase digestion. Efficient single-step purification of the recombinant protein was achieved either by concanavalin A affinity chromatography or by Ni(2+)-chelate affinity chromatography, when a 6xHis tag was engineered to the carboxyl terminus of hSC. Recombinant hSC retained the capacity to specifically reassociate with dimeric IgA purified from hybridoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various compositions of synthetic calcium phosphates (CaP) have been proposed and their use has considerably increased over the past decades. Besides differences in physico-chemical properties, resorption and osseointegration, artificial CaP bone graft might differ in their resistance against biofilm formation. We investigated standardised cylinders of 5 different CaP bone grafts (cyclOS, chronOS (both β-TCP (tricalcium phosphate)), dicalcium phosphate (DCP), calcium-deficient hydroxyapatite (CDHA) and α-TCP). Various physico-chemical characterisations e.g., geometrical density, porosity, and specific surface area were investigated. Biofilm formation was carried out in tryptic soy broth (TSB) and human serum (SE) using Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984). The amount of biofilm was analysed by an established protocol using sonication and microcalorimetry. Physico-chemical characterisation showed marked differences concerning macro- and micropore size, specific surface area and porosity accessible to bacteria between the 5 scaffolds. Biofilm formation was found on all scaffolds and was comparable for α-TCP, chronOS, CDHA and DCP at corresponding time points when the scaffolds were incubated with the same germ and/or growth media, but much lower for cyclOS. This is peculiar because cyclOS had an intermediate porosity, mean pore size, specific surface area, and porosity accessible to bacteria. Our results suggest that biofilm formation is not influenced by a single physico-chemical parameter alone but is a multi-step process influenced by several factors in parallel. Transfer from in vitro data to clinical situations is difficult; thus, advocating the use of cyclOS scaffolds over the four other CaP bone grafts in clinical situations with a high risk of infection cannot be clearly supported based on our data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PHO1 has been recently identified as a protein involved in the loading of inorganic phosphate into the xylem of roots in Arabidopsis. The genome of Arabidopsis contains 11 members of the PHO1 gene family. The cDNAs of all PHO1 homologs have been cloned and sequenced. All proteins have the same topology and harbor a SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the C-terminal hydrophobic portion. The SPX and EXS domains have been identified in yeast (Saccharomyces cerevisiae) proteins involved in either phosphate transport or sensing or in sorting proteins to endomembranes. The Arabidopsis genome contains additional proteins of unknown function containing either a SPX or an EXS domain. Phylogenetic analysis indicated that the PHO1 family is subdivided into at least three clusters. Reverse transcription-PCR revealed a broad pattern of expression in leaves, roots, stems, and flowers for most genes, although two genes are expressed exclusively in flowers. Analysis of the activity of the promoter of all PHO1 homologs using promoter-beta-glucuronidase fusions revealed a predominant expression in the vascular tissues of roots, leaves, stems, or flowers. beta-Glucuronidase expression is also detected for several promoters in nonvascular tissue, including hydathodes, trichomes, root tip, root cortical/epidermal cells, and pollen grains. The expression pattern of PHO1 homologs indicates a likely role of the PHO1 proteins not only in the transfer of phosphate to the vascular cylinder of various tissues but also in the acquisition of phosphate into cells, such as pollen or root epidermal/cortical cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic phosphate (Pi) and zinc (Zn) are two essential nutrients for plant growth. In soils, these two minerals are either present in low amounts or are poorly available to plants. Consequently, worldwide agriculture has become dependent on external sources of Pi and Zn fertilizers to increase crop yields. However, this strategy is neither economically nor ecologically sustainable in the long term, particularly for Pi, which is a non-renewable resource. To date, research has emphasized the analysis of mineral nutrition considering each nutrient individually, and showed that Pi and Zn homeostasis is highly regulated in a complex process. Interestingly, numerous observations point to an unexpected interconnection between the homeostasis of the two nutrients. Nevertheless, despite their fundamental importance, the molecular bases and biological significance of these interactions remain largely unknown. Such interconnections can account for shortcomings of current agronomic models that typically focus on improving the assimilation of individual elements. Here, current knowledge on the regulation of the transport and signalling of Pi and Zn individually is reviewed, and then insights are provided on the recent progress made towards a better understanding of the Zn-Pi homeostasis interaction in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A selection gradient was recently suggested as one possible cause for a clinal distribution of mitochondrial DNA (mtDNA) haplotypes along an altitudinal transect in the greater white-toothed shrew, Crocidura russula (Ehinger et al. 2002). One mtDNA haplotype (H1) rare in lowland, became widespread when approaching the altitudinal margin of the distribution. As H1 differs from the main lowland haplotype by several nonsynonymous mutations (including on ATP6), and as mitochondria play a crucial role in metabolism and thermogenesis, distribution patterns might stem from differences in the thermogenic capacity of different mtDNA haplotypes. In order to test this hypothesis, we measured the nonshivering thermogenesis (NST) associated with different mtDNA haplotypes. Sixty-two shrews, half of which had the H1 haplotype, were acclimated in November at semioutdoor conditions and measured for NST throughout winter. Our results showed the crucial role of NST for winter survival in C. russula. The individuals that survived winter displayed a higher significant increase in NST during acclimation, associated with a significant gain in body mass, presumably from brown fat accumulation. The NST capacity (ratio of NST to basal metabolic rate) was exceptionally high for such a small species. NST was significantly affected by a gender x haplotype interaction after winter-acclimation: females bearing the H1 haplotype displayed a better thermogenesis at the onset of the breeding season, while the reverse was true for males. Altogether, our results suggest a sexually antagonistic cyto-nuclear selection on thermogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabidopsis mutant pho1 is deficient in the transfer of Pi from root epidermal and cortical cells to the xylem. The PHO1 gene was identified by a map-based cloning strategy. The N-terminal half of PHO1 is mainly hydrophilic, whereas the C-terminal half has six potential membrane-spanning domains. PHO1 shows no homology with any characterized solute transporter, including the family of H(+)-Pi cotransporters identified in plants and fungi. PHO1 shows highest homology with the Rcm1 mammalian receptor for xenotropic murine leukemia retroviruses and with the Saccharomyces cerevisiae Syg1 protein involved in the mating pheromone signal transduction pathway. PHO1 is expressed predominantly in the roots and is upregulated weakly under Pi stress. Studies with PHO1 promoter-beta-glucuronidase constructs reveal predominant expression of the PHO1 promoter in the stelar cells of the root and the lower part of the hypocotyl. There also is beta-glucuronidase staining of endodermal cells that are adjacent to the protoxylem vessels. The Arabidopsis genome contains 10 additional genes showing homology with PHO1. Thus, PHO1 defines a novel class of proteins involved in ion transport in plants.