135 resultados para phase error detector
Resumo:
Aggregating fetal liver cell cultures were tested for their ability to metabolize xenobiotics using ethoxycoumarin-O-deethylase (ECOD), as marker of phase I metabolism, and glutathione S-transferase (GST), as marker for phase II reactions. Significant basal activities, stable over 14 days in culture were measured for both ECOD and GST activities. The prototype cytochrome P450 inducers, 3-methylcholanthrene (3-MC) and phenobarbital (PB), increased ECOD and GST activities reaching an optimum 7 days after culturing, followed by a decline in activity. This decline was partially prevented by 1% dimethyl sulfoxide (DMSO) added chronically to the culture medium. DMSO was also found to induce ECOD activity and to a lesser extent GST activity. Furthermore, it potentiated in a dose-dependent manner the induction of ECOD by PB. The food-borne carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is metabolically transformed through a number of pathways in vivo. It was therefore used to examine the metabolic capacity in fetal and adult liver cell aggregates. Metabolism of MeIQx was mainly through N2-conjugation, resulting in formation of the N2-glucuronide and sulfamate conjugates for non-induced fetal liver cells. These metabolites were also found in large amounts in non-induced adult liver cells. Low levels of cytochrome P450-mediated ring-hydroxylated metabolites were detected in both non-induced fetal and adult liver cells. After induction with arochlor (PCB) or 3-MC, the major pathway was ring-hydroxylation (cytochrome P450 dependent), followed by conjugation to beta-glucuronic or sulfuric acid. The presence of the glucuronide conjugate of N-hydroxy-MeIQx, a mutagenic metabolite, suggested an induction of P450 CYP1A2. The metabolism of MeIQx by liver cell aggregates is very similar to that observed in vivo and suggests that aggregating liver cell cultures are a useful model for in vitro metabolic studies in toxicology.
Resumo:
PURPOSE: This randomized phase II trial evaluated two docetaxel-based regimens to see which would be most promising according to overall response rate (ORR) for comparison in a phase III trial with epirubicin-cisplatin-fluorouracil (ECF) as first-line advanced gastric cancer therapy. PATIENTS AND METHODS: Chemotherapy-naïve patients with measurable unresectable and/or metastatic gastric carcinoma, a performance status <or= 1, and adequate hematologic, hepatic, and renal function randomly received <or= eight 3-weekly cycles of ECF (epirubicin 50 mg/m(2) on day 1, cisplatin 60 mg/m(2) on day 1, and fluorouracil [FU] 200 mg/m(2)/d on days 1 to 21), TC (docetaxel initially 85 mg/m(2) on day 1 [later reduced to 75 mg/m(2) as a result of toxicity] and cisplatin 75 mg/m(2) on day 1), or TCF (TC plus FU 300 mg/m(2)/d on days 1 to 14). Study objectives included response (primary), survival, toxicity, and quality of life (QOL). RESULTS: ORR was 25.0% (95% CI, 13% to 41%) for ECF, 18.5% (95% CI, 9% to 34%) for TC, and 36.6% (95% CI, 23% to 53%) for TCF (n = 119). Median overall survival times were 8.3, 11.0, and 10.4 months for ECF, TC, and TCF, respectively. Toxicity was acceptable, with one toxic death (TC arm). Grade 3 or 4 neutropenia occurred in more treatment cycles with docetaxel (TC, 49%; TCF, 57%; ECF, 34%). Global health status/QOL substantially improved with ECF and remained similar to baseline with both docetaxel regimens. CONCLUSION: Time to response and ORR favor TCF over TC for further evaluation, particularly in the neoadjuvant setting. A trend towards increased myelosuppression and infectious complications with TCF versus TC or ECF was observed.
Resumo:
BACKGROUND: Hypertension can be controlled adequately with existing drugs such as angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers. Nevertheless, treatment success is often restricted by patients not adhering to treatment. Immunisation against angiotensin II could solve this problem. We investigated the safety and efficacy of CYT006-AngQb-a vaccine based on a virus-like particle-that targets angiotensin II to reduce ambulatory blood pressure. METHODS: In this multicentre, double-blind, randomised, placebo-controlled phase IIa trial, 72 patients with mild-to-moderate hypertension were randomly assigned with a computer-generated randomisation list to receive subcutaneous injections of either 100 mug CYT006-AngQb (n=24), 300 mug CYT006-AngQb (24), or placebo (24), at weeks 0, 4, and 12. 24-h ambulatory blood pressure was measured before treatment and at week 14. The primary outcomes were safety and tolerability. Analyses were done by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00500786. FINDINGS: Two patients in the 100 mug group, three in the 300 mug group, and none in the placebo group discontinued study treatment. All patients were included in safety analyses; efficacy analyses did not include the five dropouts, for whom no data were available at week 14. Five serious adverse events were reported (two in the 100 mug group, two in the 300 mug group, and one in the placebo group); none were deemed to be treatment related. Most side-effects were mild, transient reactions at the injection site. Mild, transient influenza-like symptoms were seen in three patients in the 100 mug group, seven in the 300 mug group, and none in the placebo group. In the 300 mug group, there was a reduction from baseline in mean ambulatory daytime blood pressure at week 14 by -9.0/-4.0 mm Hg compared with placebo (p=0.015 for systolic and 0.064 for diastolic). The 300 mug dose reduced the early morning blood-pressure surge compared with placebo (change at 0800 h -25/-13 mm Hg; p<0.0001 for systolic, p=0.0035 for diastolic). INTERPRETATION: Immunisation with CYT006-AngQb was associated with no serious adverse events; most observed adverse events were consistent with local or systemic responses similar to those seen with other vaccines. The 300 mug dose reduced blood pressure in patients with mild-to-moderate hypertension during the daytime, especially in the early morning. FUNDING: Cytos Biotechnology AG.
Resumo:
Sleep disorders are very prevalent and represent an emerging worldwide epidemic. However, research into the molecular genetics of sleep disorders remains surprisingly one of the least active fields. Nevertheless, rapid progress is being made in several prototypical disorders, leading recently to the identification of the molecular pathways underlying narcolepsy and familial advanced sleep-phase syndrome. Since the first reports of spontaneous and induced loss-of-function mutations leading to hypocretin deficiency in human and animal models of narcolepsy, the role of this novel neurotransmission pathway in sleep and several other behaviors has gained extensive interest. Also, very recent studies using an animal model of familial advanced sleep-phase syndrome shed new light on the regulation of circadian rhythms.
Resumo:
Zero correlation between measurement error and model error has been assumed in existing panel data models dealing specifically with measurement error. We extend this literature and propose a simple model where one regressor is mismeasured, allowing the measurement error to correlate with model error. Zero correlation between measurement error and model error is a special case in our model where correlated measurement error equals zero. We ask two research questions. First, we wonder if the correlated measurement error can be identified in the context of panel data. Second, we wonder if classical instrumental variables in panel data need to be adjusted when correlation between measurement error and model error cannot be ignored. Under some regularity conditions the answer is yes to both questions. We then propose a two-step estimation corresponding to the two questions. The first step estimates correlated measurement error from a reverse regression; and the second step estimates usual coefficients of interest using adjusted instruments.
Resumo:
We present a novel hybrid (or multiphysics) algorithm, which couples pore-scale and Darcy descriptions of two-phase flow in porous media. The flow at the pore-scale is described by the Navier?Stokes equations, and the Volume of Fluid (VOF) method is used to model the evolution of the fluid?fluid interface. An extension of the Multiscale Finite Volume (MsFV) method is employed to construct the Darcy-scale problem. First, a set of local interpolators for pressure and velocity is constructed by solving the Navier?Stokes equations; then, a coarse mass-conservation problem is constructed by averaging the pore-scale velocity over the cells of a coarse grid, which act as control volumes; finally, a conservative pore-scale velocity field is reconstructed and used to advect the fluid?fluid interface. The method relies on the localization assumptions used to compute the interpolators (which are quite straightforward extensions of the standard MsFV) and on the postulate that the coarse-scale fluxes are proportional to the coarse-pressure differences. By numerical simulations of two-phase problems, we demonstrate that these assumptions provide hybrid solutions that are in good agreement with reference pore-scale solutions and are able to model the transition from stable to unstable flow regimes. Our hybrid method can naturally take advantage of several adaptive strategies and allows considering pore-scale fluxes only in some regions, while Darcy fluxes are used in the rest of the domain. Moreover, since the method relies on the assumption that the relationship between coarse-scale fluxes and pressure differences is local, it can be used as a numerical tool to investigate the limits of validity of Darcy's law and to understand the link between pore-scale quantities and their corresponding Darcy-scale variables.
Resumo:
Prevention of tuberculosis (TB) through vaccination would substantially reduce the global TB burden. Mtb72F/AS02 is a candidate TB vaccine shown to be immunogenic and well tolerated in PPD-negative adults. We evaluated the safety and immunogenicity of Mtb72F/AS02 in Mycobacterium-primed adults (BCG-vaccinated, or infected adults who had received post-exposure chemoprophylaxis or treatment for pulmonary TB disease). In this observer-blind controlled trial, 20 BCG-vaccinated adults and 18 adults previously infected with Mycobacterium tuberculosis (Mtb), were randomized 3:1 to receive three doses of Mtb72F/AS02 or AS02 at one-month intervals, and followed for 6 months post third vaccination. Mtb72F/AS02 was well tolerated in BCG-vaccinated adults, and tended to be more reactogenic in Mtb-infected adults. Adverse events were mainly self-limiting, resolving without sequelae. No serious adverse events were reported. The adverse events in Mtb72F/AS02 vaccinees were not clearly associated with vaccine-induced responses (as assessed by proinflammatory cytokines, total IgE and C-reactive protein levels). No Th2 T-cell responses, or vaccine-induced T-cell responses to Mtb antigens (CFP-10/PPD/ESAT-6) were detected by ICS. In both cohorts, Mtb72F/AS02 induced persistent polyfunctional Mtb72F-specific CD4(+) T-cell responses and anti-Mtb72F humoral responses. IFN-γ was detectable in serum one day post each vaccination. Further evaluation of the candidate vaccine, Mtb72F/AS02, is warranted. Trial registration: ClinicalTrials.gov identifier: NCT00146744.
Resumo:
RATIONALE AND OBJECTIVES: To determine optimum spatial resolution when imaging peripheral arteries with magnetic resonance angiography (MRA). MATERIALS AND METHODS: Eight vessel diameters ranging from 1.0 to 8.0 mm were simulated in a vascular phantom. A total of 40 three-dimensional flash MRA sequences were acquired with incremental variations of fields of view, matrix size, and slice thickness. The accurately known eight diameters were combined pairwise to generate 22 "exact" degrees of stenosis ranging from 42% to 87%. Then, the diameters were measured in the MRA images by three independent observers and with quantitative angiography (QA) software and used to compute the degrees of stenosis corresponding to the 22 "exact" ones. The accuracy and reproducibility of vessel diameter measurements and stenosis calculations were assessed for vessel size ranging from 6 to 8 mm (iliac artery), 4 to 5 mm (femoro-popliteal arteries), and 1 to 3 mm (infrapopliteal arteries). Maximum pixel dimension and slice thickness to obtain a mean error in stenosis evaluation of less than 10% were determined by linear regression analysis. RESULTS: Mean errors on stenosis quantification were 8.8% +/- 6.3% for 6- to 8-mm vessels, 15.5% +/- 8.2% for 4- to 5-mm vessels, and 18.9% +/- 7.5% for 1- to 3-mm vessels. Mean errors on stenosis calculation were 12.3% +/- 8.2% for observers and 11.4% +/- 15.1% for QA software (P = .0342). To evaluate stenosis with a mean error of less than 10%, maximum pixel surface, the pixel size in the phase direction, and the slice thickness should be less than 1.56 mm2, 1.34 mm, 1.70 mm, respectively (voxel size 2.65 mm3) for 6- to 8-mm vessels; 1.31 mm2, 1.10 mm, 1.34 mm (voxel size 1.76 mm3), for 4- to 5-mm vessels; and 1.17 mm2, 0.90 mm, 0.9 mm (voxel size 1.05 mm3) for 1- to 3-mm vessels. CONCLUSION: Higher spatial resolution than currently used should be selected for imaging peripheral vessels.
Resumo:
Solid phase microextraction (SPME) has been widely used for many years in various applications, such as environmental and water samples, food and fragrance analysis, or biological fluids. The aim of this study was to suggest the SPME method as an alternative to conventional techniques used in the evaluation of worker exposure to benzene, toluene, ethylbenzene, and xylene (BTEX). Polymethylsiloxane-carboxen (PDMS/CAR) showed as the most effective stationary phase material for sorbing BTEX among other materials (polyacrylate, PDMS, PDMS/divinylbenzene, Carbowax/divinylbenzene). Various experimental conditions were studied to apply SPME to BTEX quantitation in field situations. The uptake rate of the selected fiber (75 microm PDMS/CAR) was determined for each analyte at various concentrations, relative humidities, and airflow velocities from static (calm air) to dynamic (> 200 cm/s) conditions. The SPME method also was compared with the National Institute of Occupational Safety and Health method 1501. Unlike the latter, the SPME approach fulfills the new requirement for the threshold limit value-short term exposure limit (TLV-STEL) of 2.5 ppm for benzene (8 mg/m(3))
Resumo:
n this paper the iterative MSFV method is extended to include the sequential implicit simulation of time dependent problems involving the solution of a system of pressure-saturation equations. To control numerical errors in simulation results, an error estimate, based on the residual of the MSFV approximate pressure field, is introduced. In the initial time steps in simulation iterations are employed until a specified accuracy in pressure is achieved. This initial solution is then used to improve the localization assumption at later time steps. Additional iterations in pressure solution are employed only when the pressure residual becomes larger than a specified threshold value. Efficiency of the strategy and the error control criteria are numerically investigated. This paper also shows that it is possible to derive an a-priori estimate and control based on the allowed pressure-equation residual to guarantee the desired accuracy in saturation calculation.
Resumo:
Experimental studies in nude mice with human colon-carcinoma grafts demonstrated the therapeutic efficiency of F(ab')2 fragments to carcinoembryonic antigen (CEA) labeled with a high dose of 131Iodine. A phase I/II study was designed to determine the maximum tolerated dose of 131I-labeled F(ab')2 fragments (131I-F(ab')2) from anti-CEA monoclonal antibody F6, its limiting organ toxicity and tumor uptake. Ten patients with non-resectable liver metastases from colorectal cancer (9 detected by CT scan and 1 by laparotomy) were treated with 131I-F(ab')2, doses ranging from 87 mCi to 300 mCi for the first 5 patients, with a constant 300-mCi dose for the last 5 patients. For all the patients, autologous bone marrow was harvested and stored before treatment. Circulating CEA ranged from 2 to 126 ng/ml. No severe adverse events were observed during or immediately following infusion of therapeutic doses. The 9 patients with radiologic evidence of liver metastases showed uptake of 131I-F(ab')2 in the metastases, as observed by single-photon-emission tomography. The only toxicity was hematologic, and no severe aplasia was observed when up to 250 mCi was infused. At the 300-mCi dose, 5 out of 6 patients presented grade-3 or -4 hematologic toxicity, with a nadir for neutrophils and thrombocytes ranging from 25 to 35 days after infusion. In these 5 cases, bone marrow was re-infused. No clinical complications were observed during aplasia. The tumor response could be evaluated in 9 out of 10 patients. One patient showed a partial response of one small liver metastasis (2 cm in diameter) and a stable evolution of the other metastases, 2 patients had stable disease, and 6 showed tumor progression at the time of evaluation (2 or 3 months after injection) by CT scan. This phase-I/II study demonstrated that a dose of 300 mCi of 131I-F(ab')2 from the anti-CEA Mab F6 is well tolerated with bone-marrow rescue, whereas a dose of 200 mCi can be infused without severe bone-marrow toxicity.
Resumo:
Purpose: To compare the long-term outcome of treatment with concomitant cisplatin and hyperfractionated radiotherapy versus treatment with hyperfractionated radiotherapy alone in patients with locally advanced head and neck cancer.Methods and Materials: From July 1994 to July 2000, a total of 224 patients with squamous cell carcinoma of the head and neck were randomized to receive either hyperfractionated radiotherapy alone (median total dose, 74.4 Gy; 1.2 Gy twice daily; 5 days per week) or the same radiotherapy combined with two cycles of cisplatin (20 mg/m(2) for 5 consecutive days during weeks 1 and 5). The primary endpoint was the time to any treatment failure; secondary endpoints were locoregional failure, metastatic failure, overall survival, and late toxicity assessed according to Radiation Therapy Oncology Group criteria.Results: Median follow-up was 9.5 years (range, 0.1-15.4 years). Median time to any treatment failure was not significantly different between treatment arms (hazard ratio [HR], 1.2 [95% confidence interval [CM 0.9-1.7; p = 0.17]). Rates of locoregional failure-free survival (HR, 1.5 [95% CI, 1.1-2.1;p = 0.021), distant metastasis-free survival (HR, 1.6 [95% CI, 1.1-2.5; p = 0.021), and cancer-specific survival (HR, 1.6 [95% CI, 1.0-2.5;p = 0.03]) were significantly improved in the combined-treatment arm, with no difference in major late toxicity between treatment arms. However, overall survival was not significantly different (HR, 1.3 [95% CI, 0.9-1.8; p = 0.11]).Conclusions: After long-term follow-up, combined-treatment with cisplatin and hyperfractionated radiotherapy maintained improved rates of locoregional control, distant metastasis-free survival, and cancer-specific survival compared to that of hyperfractionated radiotherapy alone, with no difference in major late toxicity. (C) 2012 Elsevier Inc.
Resumo:
E2F transcriptional regulators control human-cell proliferation by repressing and activating the transcription of genes required for cell-cycle progression, particularly the S phase. E2F proteins repress transcription in association with retinoblastoma pocket proteins, but less is known about how they activate transcription. Here, we show that the human G1 phase regulator HCF-1 associates with both activator (E2F1 and E2F3a) and repressor (E2F4) E2F proteins, properties that are conserved in insect cells. Human HCF-1-E2F interactions are versatile: their associations and binding to E2F-responsive promoters are cell-cycle selective, and HCF-1 displays coactivator properties when bound to the E2F1 activator and corepressor properties when bound to the E2F4 repressor. During the G1-to-S phase transition, HCF-1 recruits the mixed-lineage leukemia (MLL) and Set-1 histone H3 lysine 4 methyltransferases to E2F-responsive promoters and induces histone methylation and transcriptional activation. These results suggest that HCF-1 induces cell-cycle-specific transcriptional activation by E2F proteins to promote cell proliferation.