106 resultados para parasitoid-host interaction
Resumo:
OBJECTIVE: To assess the relationships and possible interactions between polymorphisms related to HDL levels and alcohol consumption. METHODS: Cross-sectional population-based study including 2863 women and 2546 men aged 35-75 years (CoLaus study). Alcohol intake was assessed by the reported alcohol consumption of the last 7 days. Nineteen candidate genes known to influence HDL levels were studied. RESULTS: Alcohol consumption increased HDL cholesterol levels in both genders. After multivariate adjustment for gender, age, body mass index, smoking, hypolipidaemic drug treatment, physical activity and alcohol consumption, APOA5, CETP, LIPC and LPL gene polymorphisms were significantly (10(-5) threshold) related with HDL cholesterol levels, while no genexalcohol intake interaction was found for all SNPs studied. ABCA1 polymorphisms were related to HDL cholesterol levels on bivariate analysis but the relationship was no longer significant after multivariate analysis. CONCLUSION: Our data confirm the association of alcohol consumption and of APOA5, CETP, LIPC and LPL gene polymorphisms with HDL cholesterol levels. Conversely, no genexalcohol consumption interactions were found, suggesting that the effect of alcohol consumption on HDL cholesterol levels is not mediated via a modulation of HDL related genes.
Resumo:
Colistin is a last resort's antibacterial treatment in critically ill patients with multi-drug resistant Gram-negative infections. As appropriate colistin exposure is the key for maximizing efficacy while minimizing toxicity, individualized dosing optimization guided by therapeutic drug monitoring is a top clinical priority. Objective of the present work was to develop a rapid and robust HPLC-MS/MS assay for quantification of colistin plasma concentrations. This novel methodology validated according to international standards simultaneously quantifies the microbiologically active compounds colistin A and B, plus the pro-drug colistin methanesulfonate (colistimethate, CMS). 96-well micro-Elution SPE on Oasis Hydrophilic-Lipophilic-Balanced (HLB) followed by direct analysis by Hydrophilic Interaction Liquid Chromatography (HILIC) with Ethylene Bridged Hybrid - BEH - Amide phase column coupled to tandem mass spectrometry allows a high-throughput with no significant matrix effect. The technique is highly sensitive (limit of quantification 0.014 and 0.006μg/mL for colistin A and B), precise (intra-/inter-assay CV 0.6-8.4%) and accurate (intra-/inter-assay deviation from nominal concentrations -4.4 to +6.3%) over the clinically relevant analytical range 0.05-20μg/mL. Colistin A and B in plasma and whole blood samples are reliably quantified over 48h at room temperature and at +4°C (<6% deviation from nominal values) and after three freeze-thaw cycles. Colistimethate acidic hydrolysis (1M H2SO4) to colistin A and B in plasma was completed in vitro after 15min of sonication while the pro-drug hydrolyzed spontaneously in plasma ex vivo after 4h at room temperature: this information is of utmost importance for interpretation of analytical results. Quantification is precise and accurate when using serum, citrated or EDTA plasma as biological matrix, while use of heparin plasma is not appropriate. This new analytical technique providing optimized quantification in real-life conditions of the microbiologically active compounds colistin A and B offers a highly efficient tool for routine therapeutic drug monitoring aimed at individualizing drug dosing against life-threatening infections.
Resumo:
The Myc proto-oncoproteins are transcription factors that recognize numerous target genes through hexameric DNA sequences called E-boxes. The mechanism by which they then activate the expression of these targets is still under debate. Here, we use an RNAi screen in Drosophila S2 cells to identify Drosophila host cell factor (dHCF) as a novel co-factor for Myc that is functionally required for the activation of a Myc-dependent reporter construct. dHCF is also essential for the full activation of endogenous Myc target genes in S2 cells, and for the ability of Myc to promote growth in vivo. Myc and dHCF physically interact, and they colocalize on common target genes. Furthermore, down-regulation of dHCF-associated histone acetyltransferase and histone methyltransferase complexes in vivo interferes with the Myc biological activities. We therefore propose that dHCF recruits such chromatin-modifying complexes and thereby contributes to the expression of Myc targets and hence to the execution of Myc biological activities.
Resumo:
BACKGROUND: The population genetic structure of a parasite, and consequently its ability to adapt to a given host, is strongly linked to its own life history as well as the life history of its host. While the effects of parasite life history on their population genetic structure have received some attention, the effect of host social system has remained largely unstudied. In this study, we investigated the population genetic structure of two closely related parasitic mite species (Spinturnix myoti and Spinturnix bechsteini) with very similar life histories. Their respective hosts, the greater mouse-eared bat (Myotis myotis) and the Bechstein's bat (Myotis bechsteinii) have social systems that differ in several substantial features, such as group size, mating system and dispersal patterns. RESULTS: We found that the two mite species have strongly differing population genetic structures. In S. myoti we found high levels of genetic diversity and very little pairwise differentiation, whereas in S. bechsteini we observed much less diversity, strongly differentiated populations and strong temporal turnover. These differences are likely to be the result of the differences in genetic drift and dispersal opportunities afforded to the two parasites by the different social systems of their hosts. CONCLUSIONS: Our results suggest that host social system can strongly influence parasite population structure. As a result, the evolutionary potential of these two parasites with very similar life histories also differs, thereby affecting the risk and evolutionary pressure exerted by each parasite on its host.
Resumo:
The International Molecular Exchange (IMEx) consortium is an international collaboration between major public interaction data providers to share literature-curation efforts and make a nonredundant set of protein interactions available in a single search interface on a common website (http://www.imexconsortium.org/). Common curation rules have been developed, and a central registry is used to manage the selection of articles to enter into the dataset. We discuss the advantages of such a service to the user, our quality-control measures and our data-distribution practices.
Resumo:
Objective : The main objective of this study was to assess mother-child patterns of interaction in relation to later quality of attachment in a group of children with an orofacial cleft compared with children without cleft. Design : Families were contacted when the child was 2 months old for a direct assessment of mother-child interaction and then at 12 months for a direct assessment of the child's attachment. Data concerning socioeconomical information and posttraumatic stress symptoms in mothers were collected at the first appointment. Participants : Forty families of children with a cleft and 45 families of children without cleft were included in the study. Families were recruited at birth in the University Hospital of Lausanne. Results : Results showed that children with a cleft were more difficult and less cooperative during interaction at 2 months of age with their mother compared with children without a cleft. No significant differences were found in mothers or in dyadic interactive styles. Concerning the child's attachment at 12 months old, no differences were found in attachment security. However, secure children with a cleft were significantly more avoidant with their mother during the reunion episodes than secure children without cleft. Conclusion : Despite the facial disfigurement and the stress engendered by treatment during the first months of the infant's life, children with cleft and their mothers are doing as well as families without cleft with regard to the mothers' mental health, mother-child relationships, and later quality of attachment. A potential contribution for this absence of difference may be the pluridisciplinary support that families of children with cleft benefit from in Lausanne.
Resumo:
Both late menarcheal age and low calcium intake (Ca intake) during growth are risk factors for osteoporosis, probably by impairing peak bone mass. We investigated whether lasting gain in areal bone mineral density (aBMD) in response to increased Ca intake varies according to menarcheal age and, conversely, whether Ca intake could influence menarcheal age. In an initial study, 144 prepubertal girls were randomized in a double-blind controlled trial to receive either a Ca supplement (Ca-suppl.) of 850 mg/d or placebo from age 7.9-8.9 yr. Mean aBMD gain determined by dual energy x-ray absorptiometry at six sites (radius metaphysis, radius diaphysis, femoral neck, trochanter, femoral diaphysis, and L2-L4) was significantly (P = 0.004) greater in the Ca-suppl. than in the placebo group (27 vs. 21 mg/cm(2)). In 122 girls followed up, menarcheal age was recorded, and aBMD was determined at 16.4 yr of age. Menarcheal age was lower in the Ca-suppl. than in the placebo group (P = 0.048). Menarcheal age and Ca intake were negatively correlated (r = -0.35; P < 0.001), as were aBMD gains from age 7.9-16.4 yr and menarcheal age at all skeletal sites (range: r = -0.41 to r = -0.22; P < 0.001 to P = 0.016). The positive effect of Ca-suppl. on the mean aBMD gain from baseline remained significantly greater in girls below, but not in those above, the median of menarcheal age (13.0 yr). Early menarcheal age (12.1 +/- 0.5 yr): placebo, 286 +/- 36 mg/cm(2); Ca-suppl., 317 +/- 46 (P = 0.009); late menarcheal age (13.9 +/- 0.5 yr): placebo, 284 +/- 58; Ca-suppl., 276 +/- 50 (P > 0.05). The level of Ca intake during prepuberty may influence the timing of menarche, which, in turn, could influence long-term bone mass gain in response to Ca supplementation. Thus, both determinants of early menarcheal age and high Ca intake may positively interact on bone mineral mass accrual.
Resumo:
Sepsis is among the leading causes of death worldwide and its incidence is increasing. Defined as the host response to infection, sepsis is a clinical syndrome considered to be the expression of a dysregulated immune reaction induced by danger signals that may lead to organ failure and death. Remarkable progresses have been made in our understanding of the molecular basis of host defenses in recent years. The host defense response is initiated by innate immune sensors of danger signals designated under the collective name of pattern-recognition receptors. Members of the family of microbial sensors include the complement system, the Toll-like receptors, the nucleotide-binding oligomerization domainlike receptors, the RIG-I-like helicases and the C-type lectin receptors. Ligand-activated pattern-recognition receptors kick off a cascade of intracellular events resulting in the expression of co-stimulatory molecules and release of effector molecules playing a fundamental role in the initiation of the innate and adaptive immune responses. Fine tuning of proinflammatory and anti-inflammatory reactions is critical for keeping the innate immune response in check. Overwhelming or dysregulated responses induced by infectious stimuli may have dramatic consequences for the host as shown by the profound derangements observed in sepsis. Unfortunately, translational research approaches aimed at the development of therapies targeting newly identified innate immune pathways have not held their promises. Indeed, all recent clinical investigations of adjunctive anti-sepsis treatments had little, if any, impact on morbidity and all-cause mortality of sepsis. Dissecting the mechanisms underlying the transition from infection to sepsis is essential for solving the sepsis enigma. Important components of the puzzle have already been identified, but the hunt must go on in the laboratory and at the bedside.
Resumo:
1. The mechanisms underlying host choice strategies by parasites remain poorly understood. We address two main questions: (i) do parasites prefer vulnerable or well-fed hosts, and (ii) to what extent is a parasite species specialized towards a given host species? 2. To answer these questions, we investigated, both in the field and in the lab, a host-parasite system comprising one ectoparasitic mite (Spinturnix myoti) and its major hosts, two sibling species of bats (Myotis myotis and M blythii), which coexist intimately in colonial nursery roosts. We exploited the close physical associations between host species in colonial roosts as well as naturally occurring annual variation in food abundance to investigate the relationships between parasite intensities and (i) host species and (ii) individual nutritional status. 3. Although horizontal transmission of parasites was facilitated by the intimate aggregation of bats within their colonial clusters, we found significant interspecific differences in degree of infestation throughout the 6 years of the study, with M. myotis always more heavily parasitized than M. blythii. This pattern was replicated in a laboratory experiment in which any species-specific resistance induced by exploitation of different trophic niches in nature was removed. 4. Within both host species, S. myoti showed a clear preference for individuals with higher nutritional status. In years with high resource abundance, both bat hosts harboured more parasites than in low-resource years, although the relative difference in parasite burden across species was maintained. This pattern of host choice was also replicated in the laboratory. When offered a choice, parasites always colonized better-fed individuals. 5. These results show first that host specialization in our study system occurred. Second, immediate parasite choice clearly operated towards the selection of hosts in good nutritional state.
Resumo:
The discovery of innate immune genes, such as those encoding Toll-like receptors (TLRs), nucleotide-binding oligomerisation domain-like receptors (NLRs), and related signal-transducing molecules, has led to a substantial improvement of our understanding of innate immunity. Recent immunogenetic studies have associated polymorphisms of the genes encoding TLRs, NLRs, and key signal-transducing molecules, such as interleukin-1 receptor-associated kinase 4 (IRAK4), with increased susceptibility to, or outcome of, infectious diseases. With the availability of high-throughput genotyping techniques, it is becoming increasingly evident that analyses of genetic polymorphisms of innate immune genes will further improve our knowledge of the host antimicrobial defence response and help in identifying individuals who are at increased risk of life-threatening infections. This is likely to open new perspectives for the development of diagnostic, predictive, and preventive management strategies to combat infectious diseases.
Resumo:
Macrophages are essential effector cells of innate immunity that play a pivotal role in the recognition and elimination of invasive microorganisms. Mediators released by activated macrophages orchestrate innate and adaptive immune host responses. The cytokine macrophage migration inhibitory factor (MIF) is an integral mediator of the innate immune system. Monocytes and macrophages constitutively express large amounts of MIF, which is rapidly released after exposure to bacterial toxins and cytokines. MIF exerts potent proinflammatory activities and is an important cytokine of septic shock. Recent investigations of the mechanisms by which MIF regulates innate immune responses to endotoxin and gram-negative bacteria indicate that MIF acts by modulating the expression of Toll-like receptor 4, the signal-transducing molecule of the lipopolysaccharide receptor complex. Given its role in innate immune responses to bacterial infections, MIF is a novel target for therapeutic intervention in patients with septic shock.