74 resultados para non linear absorption
Resumo:
This paper presents multiple kernel learning (MKL) regression as an exploratory spatial data analysis and modelling tool. The MKL approach is introduced as an extension of support vector regression, where MKL uses dedicated kernels to divide a given task into sub-problems and to treat them separately in an effective way. It provides better interpretability to non-linear robust kernel regression at the cost of a more complex numerical optimization. In particular, we investigate the use of MKL as a tool that allows us to avoid using ad-hoc topographic indices as covariables in statistical models in complex terrains. Instead, MKL learns these relationships from the data in a non-parametric fashion. A study on data simulated from real terrain features confirms the ability of MKL to enhance the interpretability of data-driven models and to aid feature selection without degrading predictive performances. Here we examine the stability of the MKL algorithm with respect to the number of training data samples and to the presence of noise. The results of a real case study are also presented, where MKL is able to exploit a large set of terrain features computed at multiple spatial scales, when predicting mean wind speed in an Alpine region.
Resumo:
In swarm robotics, communication among the robots is essential. Inspired by biological swarms using pheromones, we propose the use of chemical compounds to realize group foraging behavior in robot swarms. We designed a fully autonomous robot, and then created a swarm using ethanol as the trail pheromone allowing the robots to communicate with one another indirectly via pheromone trails. Our group recruitment and cooperative transport algorithms provide the robots with the required swarm behavior. We conducted both simulations and experiments with real robot swarms, and analyzed the data statistically to investigate any changes caused by pheromone communication in the performance of the swarm in solving foraging recruitment and cooperative transport tasks. The results show that the robots can communicate using pheromone trails, and that the improvement due to pheromone communication may be non-linear, depending on the size of the robot swarm.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed a downscaling procedure based on a non-linear Bayesian sequential simulation approach. The basic objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity, which is available throughout the model space. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariate kernel density function. This method is then applied to the stochastic integration of low-resolution, re- gional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this downscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the downscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
This study aimed to use the plantar pressure insole for estimating the three-dimensional ground reaction force (GRF) as well as the frictional torque (T(F)) during walking. Eleven subjects, six healthy and five patients with ankle disease participated in the study while wearing pressure insoles during several walking trials on a force-plate. The plantar pressure distribution was analyzed and 10 principal components of 24 regional pressure values with the stance time percentage (STP) were considered for GRF and T(F) estimation. Both linear and non-linear approximators were used for estimating the GRF and T(F) based on two learning strategies using intra-subject and inter-subjects data. The RMS error and the correlation coefficient between the approximators and the actual patterns obtained from force-plate were calculated. Our results showed better performance for non-linear approximation especially when the STP was considered as input. The least errors were observed for vertical force (4%) and anterior-posterior force (7.3%), while the medial-lateral force (11.3%) and frictional torque (14.7%) had higher errors. The result obtained for the patients showed higher error; nevertheless, when the data of the same patient were used for learning, the results were improved and in general slight differences with healthy subjects were observed. In conclusion, this study showed that ambulatory pressure insole with data normalization, an optimal choice of inputs and a well-trained nonlinear mapping function can estimate efficiently the three-dimensional ground reaction force and frictional torque in consecutive gait cycle without requiring a force-plate.
Resumo:
Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.
Resumo:
Introduction Women with Chagas disease receiving treatment with nifurtimox are discouraged from breast feeding. Many patients who would receive treatment with nifurtimox live in extreme poverty, have limited access to resources such as clean water and baby formula and may not have safe alternatives to breast milk. Aim We aimed to estimate, using limited available pharmacokinetics data, potential infant exposure to nifurtimox through breast milk. Methods Original nifurtimox plasma concentrations were obtained from published studies. Pharmacokinetic parameters were estimated using non-linear mixed-effect modelling with NONMEM V.VI. A total of 1000 nifurtimox plasma-concentration profiles were simulated and used to calculate the amount of drug that an infant would be exposed to, if breast fed 150 ml/kg/day. Results Breast milk concentrations on the basis of peak plasma levels (1361 ng/ml) and milk-plasma ratio were estimated. We calculated infant nifurtimox exposure of a breastfed infant of a mother treated with this drug to be below 10% of the maternal weight-adjusted dose, even if milk-plasma ratio were overestimated. Simulation led to similar estimates. Discussion Risk for significant infant exposure to nifurtimox through breast milk seems small and below the level of exposure of infants with Chagas disease receiving nifurtimox treatment. This potential degree of exposure may not justify discontinuation of breast feeding.
Resumo:
Brain perfusion can be assessed by CT and MR. For CT, two major techniquesare used. First, Xenon CT is an equilibrium technique based on a freely diffusibletracer. First pass of iodinated contrast injected intravenously is a second method,more widely available. Both methods are proven to be robust and quantitative,thanks to the linear relationship between contrast concentration and x-ray attenuation.For the CT methods, concern regarding x-ray doses delivered to the patientsneed to be addressed. MR is also able to assess brain perfusion using the firstpass of gadolinium based contrast agent injected intravenously. This method hasto be considered as a semi-quantitative because of the non linear relationshipbetween contrast concentration and MR signal changes. Arterial spin labelingis another MR method assessing brain perfusion without injection of contrast. Insuch case, the blood flow in the carotids is magnetically labelled by an externalradiofrequency pulse and observed during its first pass through the brain. Eachof this various CT and MR techniques have advantages and limits that will be illustratedand summarised.Learning Objectives:1. To understand and compare the different techniques for brain perfusionimaging.2. To learn about the methods of acquisition and post-processing of brainperfusion by first pass of contrast agent for CT and MR.3. To learn about non contrast MR methods (arterial spin labelling).
Resumo:
In dynamic models of energy allocation, assimilated energy is allocated to reproduction, somatic growth, maintenance or storage, and the allocation pattern can change with age. The expected evolutionary outcome is an optimal allocation pattern, but this depends on the environment experienced during the evolutionary process and on the fitness costs and benefits incurred by allocating resources in different ways. Here we review existing treatments which encompass some of the possibilities as regards constant or variable environments and their predictability or unpredictability, and the ways in which production rates and mortality rates depend on body size and composition and age and on the pattern of energy allocation. The optimal policy is to allocate resources where selection pressures are highest, and simultaneous allocation to several body subsystems and reproduction can be optimal if these pressures are equal. This may explain balanced growth commonly observed during ontogeny. Growth ceases at maturity in many models; factors favouring growth after maturity include non-linear trade-offs, variable season length, and production and mortality rates both increasing (or decreasing) functions of body size. We cannot yet say whether these are sufficient to account for the many known cases of growth after maturity and not all reasonable models have yet been explored. Factors favouring storage are also reviewed.
Resumo:
The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.
Resumo:
General clustering deals with weighted objects and fuzzy memberships. We investigate the group- or object-aggregation-invariance properties possessed by the relevant functionals (effective number of groups or objects, centroids, dispersion, mutual object-group information, etc.). The classical squared Euclidean case can be generalized to non-Euclidean distances, as well as to non-linear transformations of the memberships, yielding the c-means clustering algorithm as well as two presumably new procedures, the convex and pairwise convex clustering. Cluster stability and aggregation-invariance of the optimal memberships associated to the various clustering schemes are examined as well.
Resumo:
At the beginning of the 21st century, a new social arrangement of work poses a series of questions and challenges to scholars who aim to help people develop their working lives. Given the globalization of career counseling, we decided to address these issues and then to formulate potentially innovative responses in an international forum. We used this approach to avoid the difficulties of creating models and methods in one country and then trying to export them to other countries where they would be adapted for use. This article presents the initial outcome of this collaboration, a counseling model and methods. The life-designing model for career intervention endorses five presuppositions about people and their work lives: contextual possibilities, dynamic processes, non-linear progression, multiple perspectives, and personal patterns. Thinking from these five presuppositions, we have crafted a contextualized model based on the epistemology of social constructionism, particularly recognizing that an individual's knowledge and identity are the product of social interaction and that meaning is co-constructed through discourse. The life-design framework for counseling implements the theories of self-constructing [Guichard, J. (2005). Life-long self-construction. International Journal for Educational and Vocational Guidance, 5, 111-124] and career construction [Savickas, M. L. (2005). The theory and practice of career construction. In S. D. Brown & R. W. Lent (Eds.), Career development and counselling: putting theory and research to work (pp. 42-70). Hoboken, NJ: Wiley] that describe vocational behavior and its development. Thus, the framework is structured to be life-long, holistic, contextual, and preventive.
Resumo:
Market segmentation is an important issue when estimating the implicit price for an environmental amenity from a surrogate market like property. This paper tests the hypothesis of a segmentation of the housing market between tourists and residents and computes the implicit price for natural landscape quality in Swiss alpine resorts. The results show a clear segmentation between both groups of consumers, although tests also show that the estimated coefficient for landscape is similar in the tourists' model and in the residents'. However, since the functional form is non linear, the nominal - rather than relative - value of a change in natural landscape quality is higher in the tourist housing market than in the residents'. Hence, considering the segmentation of the market between tourists and residents is essential in order to provide valid estimates of the nominal implicit price of natural landscape quality.
Resumo:
As modern molecular biology moves towards the analysis of biological systems as opposed to their individual components, the need for appropriate mathematical and computational techniques for understanding the dynamics and structure of such systems is becoming more pressing. For example, the modeling of biochemical systems using ordinary differential equations (ODEs) based on high-throughput, time-dense profiles is becoming more common-place, which is necessitating the development of improved techniques to estimate model parameters from such data. Due to the high dimensionality of this estimation problem, straight-forward optimization strategies rarely produce correct parameter values, and hence current methods tend to utilize genetic/evolutionary algorithms to perform non-linear parameter fitting. Here, we describe a completely deterministic approach, which is based on interval analysis. This allows us to examine entire sets of parameters, and thus to exhaust the global search within a finite number of steps. In particular, we show how our method may be applied to a generic class of ODEs used for modeling biochemical systems called Generalized Mass Action Models (GMAs). In addition, we show that for GMAs our method is amenable to the technique in interval arithmetic called constraint propagation, which allows great improvement of its efficiency. To illustrate the applicability of our method we apply it to some networks of biochemical reactions appearing in the literature, showing in particular that, in addition to estimating system parameters in the absence of noise, our method may also be used to recover the topology of these networks.
Resumo:
The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Abstract One of the most important issues in molecular biology is to understand regulatory mechanisms that control gene expression. Gene expression is often regulated by proteins, called transcription factors which bind to short (5 to 20 base pairs),degenerate segments of DNA. Experimental efforts towards understanding the sequence specificity of transcription factors is laborious and expensive, but can be substantially accelerated with the use of computational predictions. This thesis describes the use of algorithms and resources for transcriptionfactor binding site analysis in addressing quantitative modelling, where probabilitic models are built to represent binding properties of a transcription factor and can be used to find new functional binding sites in genomes. Initially, an open-access database(HTPSELEX) was created, holding high quality binding sequences for two eukaryotic families of transcription factors namely CTF/NF1 and LEFT/TCF. The binding sequences were elucidated using a recently described experimental procedure called HTP-SELEX, that allows generation of large number (> 1000) of binding sites using mass sequencing technology. For each HTP-SELEX experiments we also provide accurate primary experimental information about the protein material used, details of the wet lab protocol, an archive of sequencing trace files, and assembled clone sequences of binding sequences. The database also offers reasonably large SELEX libraries obtained with conventional low-throughput protocols.The database is available at http://wwwisrec.isb-sib.ch/htpselex/ and and ftp://ftp.isrec.isb-sib.ch/pub/databases/htpselex. The Expectation-Maximisation(EM) algorithm is one the frequently used methods to estimate probabilistic models to represent the sequence specificity of transcription factors. We present computer simulations in order to estimate the precision of EM estimated models as a function of data set parameters(like length of initial sequences, number of initial sequences, percentage of nonbinding sequences). We observed a remarkable robustness of the EM algorithm with regard to length of training sequences and the degree of contamination. The HTPSELEX database and the benchmarked results of the EM algorithm formed part of the foundation for the subsequent project, where a statistical framework called hidden Markov model has been developed to represent sequence specificity of the transcription factors CTF/NF1 and LEF1/TCF using the HTP-SELEX experiment data. The hidden Markov model framework is capable of both predicting and classifying CTF/NF1 and LEF1/TCF binding sites. A covariance analysis of the binding sites revealed non-independent base preferences at different nucleotide positions, providing insight into the binding mechanism. We next tested the LEF1/TCF model by computing binding scores for a set of LEF1/TCF binding sequences for which relative affinities were determined experimentally using non-linear regression. The predicted and experimentally determined binding affinities were in good correlation.