99 resultados para motor elétrico
Resumo:
OBJECTIVE: To detect anatomical differences in areas related to motor processing between patients with motor conversion disorder (CD) and controls. METHODS: T1-weighted 3T brain MRI data of 15 patients suffering from motor CD (nine with hemiparesis and six with paraparesis) and 25 age- and gender-matched healthy volunteers were compared using voxel-based morphometry (VBM) and voxel-based cortical thickness (VBCT) analysis. RESULTS: We report significant cortical thickness (VBCT) increases in the bilateral premotor cortex of hemiparetic patients relative to controls and a trend towards increased grey matter volume (VBM) in the same region. Regression analyses showed a non-significant positive correlation between cortical thickness changes and symptom severity as well as illness duration in CD patients. CONCLUSIONS: Cortical thickness increases in premotor cortical areas of patients with hemiparetic CD provide evidence for altered brain structure in a condition with presumed normal brain anatomy. These may either represent premorbid vulnerability or a plasticity phenomenon related to the disease with the trends towards correlations with clinical variables supporting the latter.
Resumo:
The rapid stopping of specific parts of movements is frequently required in daily life. Yet, whether selective inhibitory control of movements is mediated by a specific neural pathway or by the combination between a global stopping of all ongoing motor activity followed by the re-initiation of task-relevant movements remains unclear. To address this question, we applied time-wise statistical analyses of the topography, global field power and electrical sources of the event-related potentials to the global vs selective inhibition stimuli presented during a Go/NoGo task. Participants (n = 18) had to respond as fast as possible with their two hands to Go stimuli and to withhold the response from the two hands (global inhibition condition, GNG) or from only one hand (selective inhibition condition, SNG) when specific NoGo stimuli were presented. Behaviorally, we replicated previous evidence for slower response times in the SNG than in the Go condition. Electrophysiologically, there were two distinct phases of event-related potentials modulations between the GNG and the SNG conditions. At 110âeuro"150 ms post-stimulus onset, there was a difference in the strength of the electric field without concomitant topographic modulation, indicating the differential engagement of statistically indistinguishable configurations of neural generators for selective and global inhibitory control. At 150âeuro"200 ms, there was topographic modulation, indicating the engagement of distinct brain networks. Source estimations localized these effects within bilateral temporo-parieto-occipital and within parieto-central networks, respectively. Our results suggest that while both types of motor inhibitory control depend on global stopping mechanisms, selective and global inhibition still differ quantitatively at early attention-related processing phases.
Resumo:
Over the last decades, a decline in motor skills and in physical activity and an increase in obesity has been observed in children. However, there is a lack of data in young children. We tested if differences in motor skills and in physical activity according to weight or gender were already present in 2- to 4-year-old children. Fifty-eight child care centers in the French part of Switzerland were randomly selected for the Youp'là bouge study. Motor skills were assessed by an obstacle course including 5 motor skills, derived from the Zurich Neuromotor Assessment test. Physical activity was measured with accelerometers (GT1M, Actigraph, Florida, USA) using age-adapted cut-offs. Weight status was assessed using the International Obesity Task Force criteria (healthy weight vs overweight) for body mass index (BMI). Of the 529 children (49% girls, 3.4 ± 0.6 years, BMI 16.2 ± 1.2 kg/m2), 13% were overweight. There were no significant weight status-related differences in the single skills of the obstacle course, but there was a trend (p = 0.059) for a lower performance of overweight children in the overall motor skills score. No significant weight status-related differences in child care-based physical activity were observed. No gender-related differences were found in the overall motor skills score, but boys performed better than girls in 2 of the 5 motor skills (p ≤ 0.04). Total physical activity as well as time spent in moderate-vigorous and in vigorous activity during child care were 12-25% higher and sedentary activity 5% lower in boys compared to girls (all p < 0.01). At this early age, there were no significant weight status- or gender-related differences in global motor skills. However, in accordance to data in older children, child care-based physical activity was higher in boys compared to girls. These results are important to consider when establishing physical activity recommendations or targeting health promotion interventions in young children.
Resumo:
Whether different brain networks are involved in generating unimanual responses to a simple visual stimulus presented in the ipsilateral versus contralateral hemifield remains a controversial issue. Visuo-motor routing was investigated with event-related functional magnetic resonance imaging (fMRI) using the Poffenberger reaction time task. A 2 hemifield x 2 response hand design generated the "crossed" and "uncrossed" conditions, describing the spatial relation between these factors. Both conditions, with responses executed by the left or right hand, showed a similar spatial pattern of activated areas, including striate and extrastriate areas bilaterally, SMA, and M1 contralateral to the responding hand. These results demonstrated that visual information is processed bilaterally in striate and extrastriate visual areas, even in the "uncrossed" condition. Additional analyses based on sorting data according to subjects' reaction times revealed differential crossed versus uncrossed activity only for the slowest trials, with response strength in infero-temporal cortices significantly correlating with crossed-uncrossed differences (CUD) in reaction times. Collectively, the data favor a parallel, distributed model of brain activation. The presence of interhemispheric interactions and its consequent bilateral activity is not determined by the crossed anatomic projections of the primary visual and motor pathways. Distinct visuo-motor networks need not be engaged to mediate behavioral responses for the crossed visual field/response hand condition. While anatomical connectivity heavily influences the spatial pattern of activated visuo-motor pathways, behavioral and functional parameters appear to also affect the strength and dynamics of responses within these pathways.
Resumo:
OBJECT: The aim of this study was to evaluate the long-term safety and efficacy of bilateral contemporaneous deep brain stimulation (DBS) in patients who have levodopa-responsive parkinsonism with untreatable motor fluctuations. Bilateral pallidotomy carries a high risk of corticobulbar and cognitive dysfunction. Deep brain stimulation offers new alternatives with major advantages such as reversibility of effects, minimal permanent lesions, and adaptability to individual needs, changes in medication, side effects, and evolution of the disease. METHODS: Patients in whom levodopa-responsive parkinsonism with untreatable severe motor fluctuations has been clinically diagnosed underwent bilateral pallidal magnetic resonance image-guided electrode implantation while receiving a local anesthetic. Pre- and postoperative evaluations at 3-month intervals included Unified Parkinson's Disease Rating Scale (UPDRS) scoring, Hoehn and Yahr staging, 24-hour self-assessments, and neuropsychological examinations. Six patients with a mean age of 55 years (mean 42-67 years), a mean duration of disease of 15.5 years (range 12-21 years), a mean "on/off' Hoehn and Yahr stage score of 3/4.2 (range 3-5), and a mean "off' time of 40% (range 20-50%) underwent bilateral contemporaneous pallidal DBS, with a minimum follow-up period lasting 24 months (range 24-30 months). The mean dose of levodopa in these patients could not be changed significantly after the procedure and pergolide was added after 12 months in five patients because of recurring fluctuations despite adjustments in stimulation parameters. All but two patients had no fluctuations until 9 months. Two of the patients reported barely perceptible fluctuations at 12 months and two at 15 months; however, two patients remain without fluctuations at 2 years. The mean improvements in the UPDRS motor score in the off time and the activities of daily living (ADL) score were more than 50%; the mean off time decreased from 40 to 10%, and the mean dyskinesia and complication of treatment scores were reduced to one-third until pergolide was introduced at 12 months. No significant improvement in "on" scores was observed. A slight worsening after 1 year was observed and three patients developed levodopa- and stimulation-resistant gait ignition failure and minimal fluctuations at 1 year. Side effects, which were controlled by modulation of stimulation, included dysarthria, dystonia, and confusion. CONCLUSIONS: Bilateral pallidal DBS is safe and efficient in patients who have levodopa-responsive parkinsonism with severe fluctuations. Major improvements in motor score, ADL score, and off time persisted beyond 2 years after the operation, but signs of decreased efficacy started to be seen after 12 months.
Resumo:
Alpha-band activity (8-13 Hz) is not only suppressed by sensory stimulation and movements, but also modulated by attention, working memory and mental tasks, and could be sensitive to higher motor control functions. The aim of the present study was to examine alpha oscillatory activity during the preparation of simple left or right finger movements, contrasting the external and internal mode of action selection. Three preparation conditions were examined using a precueing paradigm with S1 as the preparatory and S2 as the imperative cue: Full, laterality instructed by S1; Free, laterality freely selected and None, laterality instructed by S2. Time-frequency (TF) analysis was performed in the alpha frequency range during the S1-S2 interval, and alpha motor-related amplitude asymmetries (MRAA) were also calculated. The significant MRAA during the Full and Free conditions indicated effective external and internal motor response preparation. In the absence of specific motor preparation (None), a posterior alpha event-related desynchronization (ERD) dominated, reflecting the main engagement of attentional resources. In Full and Free motor preparation, posterior alpha ERD was accompanied by a midparietal alpha event-related synchronization (ERS), suggesting a concomitant inhibition of task-irrelevant visual activity. In both Full and Free motor preparation, analysis of alpha power according to MRAA amplitude revealed two types of functional activation patterns: (1) a motor alpha pattern, with predominantly midparietal alpha ERS and large MRAA corresponding to lateralized motor activation/visual inhibition and (2) an attentional alpha pattern, with dominating right posterior alpha ERD and small MRAA reflecting visuospatial attention. The present results suggest that alpha oscillatory patterns do not resolve the selection mode of action, but rather distinguish separate functional strategies of motor preparation.
Resumo:
Introduction: Tourette syndrome (TS) implicates the disinhibition of the cortico-striatal-thalamic-cortical circuitry (CSTC). Previous studies used a volumetric approach to investigate this circuitry with inconsistent findings. Cortical thickness may represent a more reliable measure than volume due to the low variability in the cytoarchitectural structure of the grey matter. Methods: 66 magnetic resonance imaging scans were acquired from 34 TS (age range 10-25, mean 17.19±4.1) and 32 normal controls (NC) (age range 10-20, mean 16.33±3.56). Brain morphology was assessed using the fully automated Civet pipeline at the Montreal Neurological Institute. Results: We report (1) significant cortical thinning in the fronto-parietal and somatosensory-motor cortices in TS relative to NC (p<0.05); (2) TS boys showed thinner cortex relative to TS girls in the fronto-parietal cortical regions (p<0.05); (3) significant decrease in the fronto-parietal mean cortical thickness in TS with age relative to NC and in the pre-central cortex in TS boys relative to TS girls; (4) significant negative correlations between tic severity and the somatosensory-motor cortical thickness. Conclusions: TS revealed important thinning in brain regions particularly involved in the somatosensory/motor bodily representations which may play an important role in tics. Our findings are in agreement with Leckman et al. (1991) hypothesis stating that facial tics would be associated with dysfunction in an orofacial subset of the motor circuit, eye blinking with the occulo-motor circuit, whereas lack of inhibition to a dysfunction in the prefrontal cortex. Gender and age differences may reflect differential etiological factors, which have significant clinical relevance in TS and should be considered in developing and using diagnostic and therapeutic interventions.
Resumo:
Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.
Resumo:
AIM: To study the development of motor speed and associated movements in participants aged 5 to 18 years for age, sex, and laterality. METHOD: Ten motor tasks of the Zurich Neuromotor Assessment (repetitive and alternating movements of hands and feet, repetitive and sequential finger movements, the pegboard, static and dynamic balance, diadochokinesis) were administered to 593 right-handed participants (286 males, 307 females). RESULTS: A strong improvement with age was observed in motor speed from age 5 to 10, followed by a levelling-off between 12 and 18 years. Simple tasks and the pegboard matured early and complex tasks later. Simple tasks showed no associated movements beyond early childhood; in complex tasks associated movements persisted until early adulthood. The two sexes differed only marginally in speed, but markedly in associated movements. A significant laterality (p<0.001) in speed was found for all tasks except for static balance; the pegboard was most lateralized, and sequential finger movements least. Associated movements were lateralized only for a few complex tasks. We also noted a substantial interindividual variability. INTERPRETATION: Motor speed and associated movements improve strongly in childhood, weakly in adolescence, and are both of developmental relevance. Because they correlate weakly, they provide complementary information.
Resumo:
The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.
Resumo:
Following elective orthopaedic surgery or the treatment of a fracture, patients are temporarily unable to drive. This loss of independence may have serious social and economic consequences for the patient. It is therefore essential to know when it is safe to permit such patients to return to driving. This article, based upon a review of the current literature, proposes recommendations of the time period after which patients may safely return to driving. Practical decisions are made based upon the type of surgical intervention or fracture. Swiss legislation is equally approached so as to better define the decision.