48 resultados para intelligent decision support systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinematics of the anatomical shoulder are analysed and modelled as a parallel mechanism similar to a Stewart platform. A new method is proposed to describe the shoulder kinematics with minimal coordinates and solve the indeterminacy. The minimal coordinates are defined from bony landmarks and the scapulothoracic kinematic constraints. Independent from one another, they uniquely characterise the shoulder motion. A humanoid mechanism is then proposed with identical kinematic properties. It is then shown how minimal coordinates can be obtained for this mechanism and how the coordinates simplify both the motion-planning task and trajectory-tracking control. Lastly, the coordinates are also shown to have an application in the field of biomechanics where they can be used to model the scapulohumeral rhythm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a prototype of an interactive web-GIS tool for risk analysis of natural hazards, in particular for floods and landslides, based on open-source geospatial software and technologies. The aim of the presented tool is to assist the experts (risk managers) in analysing the impacts and consequences of a certain hazard event in a considered region, providing an essential input to the decision-making process in the selection of risk management strategies by responsible authorities and decision makers. This tool is based on the Boundless (OpenGeo Suite) framework and its client-side environment for prototype development, and it is one of the main modules of a web-based collaborative decision support platform in risk management. Within this platform, the users can import necessary maps and information to analyse areas at risk. Based on provided information and parameters, loss scenarios (amount of damages and number of fatalities) of a hazard event are generated on the fly and visualized interactively within the web-GIS interface of the platform. The annualized risk is calculated based on the combination of resultant loss scenarios with different return periods of the hazard event. The application of this developed prototype is demonstrated using a regional data set from one of the case study sites, Fella River of northeastern Italy, of the Marie Curie ITN CHANGES project.