104 resultados para insect dispersal
Resumo:
Disentangling the mechanisms mediating the coexistence of habitat specialists and generalists has been a long-standing subject of investigation. However, the roles of species traits and environmental and spatial factors have not been assessed in a unifying theoretical framework. Theory suggests that specialist species are more competitive in natural communities. However, empirical work has shown that specialist species are declining worldwide due to habitat loss and fragmentation. We addressed the question of the coexistence of specialist and generalist species with a spatially explicit metacommunity model in continuous and heterogeneous environments. We characterized how species' dispersal abilities, the number of interacting species, environmental spatial autocorrelation, and disturbance impact community composition. Our results demonstrated that species' dispersal ability and the number of interacting species had a drastic influence on the composition of metacommunities. More specialized species coexisted when species had large dispersal abilities and when the number of interacting species was high. Disturbance selected against highly specialized species, whereas environmental spatial autocorrelation had a marginal impact. Interestingly, species richness and niche breadth were mainly positively correlated at the community scale but were negatively correlated at the metacommunity scale. Numerous diversely specialized species can thus coexist, but both species' intrinsic traits and environmental factors interact to shape the specialization signatures of communities at both the local and global scales.
Resumo:
The application of plant-beneficial pseudomonads provides a promising alternative to chemical pest management in agriculture. The fact that Pseudomonas fluorescens CHA0 and Pf-5, both well-known biocontrol agents of fungal root diseases, exhibit also potent insecticidal activity is of particular interest, as these plant-beneficial bacteria naturally colonize the rhizosphere of important crop plants. Insecticidal activity in these strains depends on a novel locus encoding the production of a protein toxin termed Fit (for P. fluorescens insecticidal toxin). To gain a better understanding of the ecological relevance of the Pseudomonas anti-insect activity, we have begun to investigate the occurrence and molecular diversity of the Fit toxin genes among root-associated pseudomonads. To this end, we have screened a large world-wide collection of fluorescent Pseudomonas sp. isolated from the roots of different plant species using molecular fingerprinting techniques. The strains are already well characterized for exoproduct patterns and disease-suppressive ability and are currently being tested for insecticidal activity in a greater wax moth larvae assay system.
Resumo:
Many studies have forecasted the possible impact of climate change on plant distribution using models based on ecological niche theory. In their basic implementation, niche-based models do not constrain predictions by dispersal limitations. Hence, most niche-based modelling studies published so far have assumed dispersal to be either unlimited or null. However, depending on the rate of climatic change, the landscape fragmentation and the dispersal capabilities of individual species, these assumptions are likely to prove inaccurate, leading to under- or overestimation of future species distributions and yielding large uncertainty between these two extremes. As a result, the concepts of "potentially suitable" and "potentially colonisable" habitat are expected to differ significantly. To quantify to what extent these two concepts can differ, we developed MIGCLIM, a model simulating plant dispersal under climate change and landscape fragmentation scenarios. MIGCLIM implements various parameters, such as dispersal distance, increase in reproductive potential over time, barriers to dispersal or long distance dispersal. Several simulations were run for two virtual species in a study area of the western Swiss Alps, by varying dispersal distance and other parameters. Each simulation covered the hundred-year period 2001-2100 and three different IPCC-based temperature warming scenarios were considered. Our results indicate that: (i) using realistic parameter values, the future potential distributions generated using MIGCLIM can differ significantly (up to more than 95% decrease in colonized surface) from those that ignore dispersal; (ii) this divergence increases both with increasing climate warming and over longer time periods; (iii) the uncertainty associated with the warming scenario can be nearly as large as the one related to dispersal parameters; (iv) accounting for dispersal, even roughly, can importantly reduce uncertainty in projections.
Resumo:
Insect gustatory and odorant receptors (GRs and ORs) form a superfamily of novel transmembrane proteins, which are expressed in chemosensory neurons that detect environmental stimuli. Here we identify homologues of GRs (Gustatory receptor-like (Grl) genes) in genomes across Protostomia, Deuterostomia and non-Bilateria. Surprisingly, two Grls in the cnidarian Nematostella vectensis, NvecGrl1 and NvecGrl2, are expressed early in development, in the blastula and gastrula, but not at later stages when a putative chemosensory organ forms. NvecGrl1 transcripts are detected around the aboral pole, considered the equivalent to the head-forming region of Bilateria. Morpholino-mediated knockdown of NvecGrl1 causes developmental patterning defects of this region, leading to animals lacking the apical sensory organ. A deuterostome Grl from the sea urchin Strongylocentrotus purpuratus displays similar patterns of developmental expression. These results reveal an early evolutionary origin of the insect chemosensory receptor family and raise the possibility that their ancestral role was in embryonic development.
Resumo:
Afin de pouvoir se défendre contre les insectes nuisibles, les plantes ont développé plusieurs stratégies leur permettant de maximiser leurs chances de survie et de reproduction. Parmi elles, les plantes sont souvent pourvues de barrières physiques telles que les poils urticants, les épines et la cuticule. En plus, les plantes sont capables de produire des protéines anti-digestives et des métabolites secondaires insecticides tels que la nicotine, les tannins ou les glucosinolates (GS). La mise en place de ces barrières physiques et chimiques comporte un coût énergétique au détriment de la croissance et de la reproduction. Par conséquent, en absence d'insectes, la plante investit la majeure partie de son énergie dans le développement et la croissance. A l'inverse, une blessure causée par un insecte provoquera une croissance ralentie, une augmentation de la densité de poils urticants ainsi que la synthèse de défenses chimiques. Au niveau moléculaire, cette défense inductible est régulée par l'hormone végétale acide jamsonique (AJ). En réponse à l'attaque d'un insecte, la plante produit cette hormone en grande quantité, ce qui se traduira par une forte expression de gènes de défense. Pendant ma thèse, j'ai essayé de découvrir quels étaient les facteurs de transcription (FT) responsables de l'expression des gènes de défense dans Arabidopsis thaliana. J'ai ainsi pu démontrer que des plantes mutées dans les FTs comme MYC2, MYC3, MYC4, ZAT10, ZAT12, AZF2, WRKY18, WRKY40, WRKY6, ANAC019, ANAC55, ERF13 et RRTF1 deviennent plus sensibles aux insects de l'espèce Spodoptera littoralis. Par la suite, j'ai également pu montrer que MYC2, MYC3 et MYC4 sont probablement la cible principale de la voie de signalisation du AJ et qu'ils sont nécessaires pour l'expression de la majorité des gènes de défense dont la plupart sont essentiels à la biosynthèse des GS. Une plante mutée simultanément dans ces trois protéines est par conséquent incapable de synthétiser des GS et devient hypersensible aux insectes. J'ai également pu démontrer que les GS sont uniquement efficaces contre les insectes généralistes tels S. littoralis et Heliothis virescens alors que les insectes spécialisés sur les Brassicaceae comme Pieris brassicae et Plutella xylostella se sont adaptés en développant des mécanismes de détoxification. - In response to herbivore insects, plants have evolved several defence strategies to maximize their survival and reproduction. For example, plants are often endowed with trichomes, spines and a thick cuticule. In addition, plants can produce anti-digestive proteins and toxic secondary metabolites like nicotine, tannins and glucosinolates (GS). These physical and chemical barriers have an energetic cost to the detriment of growth and reproduction. As a consequence, in absence of insects, plants allocate their energy to development and growth. On the contrary, an attack by herbivore insects will affect plant growth, increase trichome density and induce the production of anti-digestive proteins and secondary metabolites. At the molecular level, this inducible defence is regulated by the phytohormone jasmonic acid (JA). Thus, an attack by herbivores will be followed by a burst of JA that will induce the expression of defence genes. The aim of my thesis was to characterize which transcription factors (TF) regulate the expression of these defence genes in Arabidopsis thaliana. I could show that plants mutated in various TFs like MYC2, MYC3, MYC4, ZAT10, ZAT12, AZF2, WRKY18, WRKY40, WRKY6, ANAC019, ANAC55, ERF 13 and RRTFl were more susceptible to the herbivore Spodoptera littoralis. Furthermore, I could demonstrate that MYC2, MYC3 and MYC4 are probably the main target of the JA-signalling pathway and that they are necessary for the insect-mediated induction of most defence genes including genes involved in the biosynthesis of GS. A triple mutant myc2myc3myc4 is depleted of GS and consequently hypersensitive to insects. Moreover, I showed that GS are only efficient against generalist herbivores like S. littoralis and Heliothis virescens whereas specialized insects like Pieris brassicae and Plutella xylostella have evolved detoxification mechanisms against GS.
Resumo:
A recent study suggests that sex-specific dispersal rates can be quantitatively estimated on the basis of sex- and state-specific (pre- vs. postdispersal) F-statistics. In the present paper, we extend this approach to account for the hierarchical structure of natural populations, and we validate it through individual-based simulations. The model is applied to an empirical data set consisting of 536 individuals (males, females, and predispersal juveniles) of greater white-toothed shrews (Crocidura russula), sampled according to a hierarchical design and typed for seven autosomal microsatellite loci. From this dataset, dispersal is significantly female biased at the local scale (breeding-group level), but not at the larger scale (among local populations). We argue that selective pressures on dispersal are likely to depend on the spatial scale considered, and that short-distance dispersal should mainly respond to kin interactions (inbreeding or kin competition avoidance), which exert differential pressure on males and females.
Resumo:
Animal dispersal in a fragmented landscape depends on the complex interaction between landscape structure and animal behavior. To better understand how individuals disperse, it is important to explicitly represent the properties of organisms and the landscape in which they move. A common approach to modelling dispersal includes representing the landscape as a grid of equal sized cells and then simulating individual movement as a correlated random walk. This approach uses a priori scale of resolution, which limits the representation of all landscape features and how different dispersal abilities are modelled. We develop a vector-based landscape model coupled with an object-oriented model for animal dispersal. In this spatially explicit dispersal model, landscape features are defined based on their geographic and thematic properties and dispersal is modelled through consideration of an organism's behavior, movement rules and searching strategies (such as visual cues). We present the model's underlying concepts, its ability to adequately represent landscape features and provide simulation of dispersal according to different dispersal abilities. We demonstrate the potential of the model by simulating two virtual species in a real Swiss landscape. This illustrates the model's ability to simulate complex dispersal processes and provides information about dispersal such as colonization probability and spatial distribution of the organism's path
Resumo:
Inbreeding avoidance is often invoked to explain observed patterns of dispersal, and theoretical models indeed point to a possibly important role. However, while inbreeding load is usually assumed constant in these models, it is actually bound to vary dynamically under the combined influences of mutation, drift, and selection and thus to evolve jointly with dispersal. Here we report the results of individual-based stochastic simulations allowing such a joint evolution. We show that strongly deleterious mutations should play no significant role, owing to the low genomic mutation rate for such mutations. Mildly deleterious mutations, by contrast, may create enough heterosis to affect the evolution of dispersal as an inbreeding-avoidance mechanism, but only provided that they are also strongly recessive. If slightly recessive, they will spread among demes and accumulate at the metapopulation level, thus contributing to mutational load, but not to heterosis. The resulting loss of viability may then combine with demographic stochasticity to promote population fluctuations, which foster indirect incentives for dispersal. Our simulations suggest that, under biologically realistic parameter values, deleterious mutations have a limited impact on the evolution of dispersal, which on average exceeds by only one-third the values expected from kin-competition avoidance.
Resumo:
Trail pheromones do more than simply guide social insect workers from point A to point B. Recent research has revealed additional ways in which they help to regulate colony foraging, often via positive and negative feedback processes that influence the exploitation of the different resources that a colony has knowledge of. Trail pheromones are often complementary or synergistic with other information sources, such as individual memory. Pheromone trails can be composed of two or more pheromones with different functions, and information may be embedded in the trail network geometry. These findings indicate remarkable sophistication in how trail pheromones are used to regulate colony-level behavior, and how trail pheromones are used and deployed at the individual level.
Resumo:
Coevolution is among the main forces shaping the biodiversity on Earth. In Eurasia, one of the best-known plant-insect interactions showing highly coevolved features involves the fly genus Chiastocheta and its host-plant Trollius. Although this system has been widely studied from an ecological point of view, the phylogenetic relationships and biogeographic history of the flies have remained little investigated. In this integrative study, we aim to test the monophyly of the five Chiastocheta eco-morphological groups, defined by Pellmyr in 1992, by inferring a mitochondrial phylogeny. We further apply a new approach to assess the effect of (i) different molecular substitution rates and (ii) phylogenetic uncertainty on the inference of the spatio-temporal evolution of the group. From a taxonomic point of view, we demonstrate that only two of Pellmyr's groups (rotundiventris and dentifera) are phylogenetically supported, the other species appearing para- or polyphyletic. We also identify the position of C. lophota, which was not included in previous surveys. From a spatio-temporal perspective, we show that the genus arose during the Pliocene in Europe. Our results also indicate that at least four large-scale dispersal events are required to explain the current distribution of Chiastocheta. Moreover, each dispersal to or from Asia is associated with a host-shift and seems to correspond to an increase in speciation rates. Finally, we highlight the correlation between diversification and climatic fluctuations, which indicate that the cycles of global cooling over the last million years had an influence on the radiation of the group.
Resumo:
We describe a novel dissimilarity framework to analyze spatial patterns of species diversity and illustrate it with alien plant invasions in Northern Portugal. We used this framework to test the hypothesis that patterns of alien invasive plant species richness and composition are differently affected by differences in climate, land use and landscape connectivity (i.e. Geographic distance as a proxy and vectorial objects that facilitate dispersal such as roads and rivers) between pairs of localities at the regional scale. We further evaluated possible effects of plant life strategies (Grime's C-S-R) and residence time. Each locality consisted of a 1 km(2) landscape mosaic in which all alien invasive species were recorded by visiting all habitat types. Multi-model inference revealed that dissimilarity in species richness is more influenced by environmental distance (particularly climate), whereas geographic distance (proxies for dispersal limitations) is more important to explain dissimilarity in species composition, with a prevailing role for ecotones and roads. However, only minor differences were found in the responses of the three C-S-R strategies. Some effect of residence time was found, but only for dissimilarity in species richness. Our results also indicated that environmental conditions (e.g. climate conditions) limit the number of alien species invading a given site, but that the presence of dispersal corridors determines the paths of invasion and therefore the pool of species reaching each site. As geographic distances (e.g. ecotones and roads) tend to explain invasion at our regional scale highlights the need to consider the management of alien invasions in the context of integrated landscape planning. Alien species management should include (but not be limited to) the mitigation of dispersal pathways along linear infrastructures. Our results therefore highlight potentially useful applications of the novel multimodel framework to the anticipation and management of plant invasions. (C) 2013 Elsevier GmbH. All rights reserved.
Resumo:
One male inherited and 8 biparentaly inherited microsatellite markers developed in the shrew Sorex antinorii were used to analyse population of this species from the Valais mountainous region of Switzerland. The analysis of the Y-chromosome microsatellite showed a nearly complete absence of male gene flow between populations from the Simplon Pass and the St-Bernard pass. These results suggest that the recolonization of the Valais from the Italian refugia after the last Pleistocene glaciations has been done through these two potential routes. To complete these results, we studied the same samples, as well as additional samples from intermediate localities, with a female inherited mtDNA marker. The highly variable D-Loop region of mtDNA was sequenced in 44 individuals. This mtDNA marker does not show a clear geographical structuration. The populations of the intermediate valleys are genetically closer to the populations of the Simplon region for the male marker, but not for the mtDNA marker. Simplon appears to have been the first route of colonisation of Valais. Female-biased dispersal could explain our results. This preliminary study exemplifies the interest of the analysis of sex-specific genetic markers in phylogeography.
Resumo:
We launched a cryptoendolithic habitat, made of a gneissic impactite inoculated with Chroococcidiopsis sp., into Earth orbit. After orbiting the Earth for 16 days, the rock entered the Earth's atmosphere and was recovered in Kazakhstan. The heat of entry ablated and heated the rock to a temperature well above the upper temperature limit for life to below the depth at which light levels are insufficient for photosynthetic organisms ( approximately 5 mm), thus killing all of its photosynthetic inhabitants. This experiment shows that atmospheric transit acts as a strong biogeographical dispersal filter to the interplanetary transfer of photosynthesis. Following atmospheric entry we found that a transparent, glassy fusion crust had formed on the outside of the rock. Re-inoculated Chroococcidiopsis grew preferentially under the fusion crust in the relatively unaltered gneiss beneath. Organisms under the fusion grew approximately twice as fast as the organisms on the control rock. Thus, the biologically destructive effects of atmospheric transit can generate entirely novel and improved endolithic habitats for organisms on the destination planetary body that survive the dispersal filter. The experiment advances our understanding of how island biogeography works on the interplanetary scale.
Resumo:
Functional connectivity affects demography and gene dynamics in fragmented populations. Besides species-specific dispersal ability, the connectivity between local populations is affected by the landscape elements encountered during dispersal. Documenting these effects is thus a central issue for the conservation and management of fragmented populations. In this study, we compare the power and accuracy of three methods (partial correlations, regressions and Approximate Bayesian Computations) that use genetic distances to infer the effect of landscape upon dispersal. We use stochastic individual-based simulations of fragmented populations surrounded by landscape elements that differ in their permeability to dispersal. The power and accuracy of all three methods are good when there is a strong contrast between the permeability of different landscape elements. The power and accuracy can be further improved by restricting analyses to adjacent pairs of populations. Landscape elements that strongly impede dispersal are the easiest to identify. However, power and accuracy decrease drastically when landscape complexity increases and the contrast between the permeability of landscape elements decreases. We provide guidelines for future studies and underline the needs to evaluate or develop approaches that are more powerful.
Resumo:
We show that the dispersal routes reconstruction problem can be stated as an instance of a graph theoretical problem known as the minimum cost arborescence problem, for which there exist efficient algorithms. Furthermore, we derive some theoretical results, in a simplified setting, on the possible optimal values that can be obtained for this problem. With this, we place the dispersal routes reconstruction problem on solid theoretical grounds, establishing it as a tractable problem that also lends itself to formal mathematical and computational analysis. Finally, we present an insightful example of how this framework can be applied to real data. We propose that our computational method can be used to define the most parsimonious dispersal (or invasion) scenarios, which can then be tested using complementary methods such as genetic analysis.