243 resultados para homologous pairing
Resumo:
Candida albicans and Candida dubliniensis are pathogenic fungi that are highly related but differ in virulence and in some phenotypic traits. During in vitro growth on certain nutrient-poor media, C. albicans and C. dubliniensis are the only yeast species which are able to produce chlamydospores, large thick-walled cells of unknown function. Interestingly, only C. dubliniensis forms pseudohyphae with abundant chlamydospores when grown on Staib medium, while C. albicans grows exclusively as a budding yeast. In order to further our understanding of chlamydospore development and assembly, we compared the global transcriptional profile of both species during growth in liquid Staib medium by RNA sequencing. We also included a C. albicans mutant in our study which lacks the morphogenetic transcriptional repressor Nrg1. This strain, which is characterized by its constitutive pseudohyphal growth, specifically produces masses of chlamydospores in Staib medium, similar to C. dubliniensis. This comparative approach identified a set of putatively chlamydospore-related genes. Two of the homologous C. albicans and C. dubliniensis genes (CSP1 and CSP2) which were most strongly upregulated during chlamydospore development were analysed in more detail. By use of the green fluorescent protein as a reporter, the encoded putative cell wall related proteins were found to exclusively localize to C. albicans and C. dubliniensis chlamydospores. Our findings uncover the first chlamydospore specific markers in Candida species and provide novel insights in the complex morphogenetic development of these important fungal pathogens.
Resumo:
Past multisensory experiences can influence current unisensory processing and memory performance. Repeated images are better discriminated if initially presented as auditory-visual pairs, rather than only visually. An experience's context thus plays a role in how well repetitions of certain aspects are later recognized. Here, we investigated factors during the initial multisensory experience that are essential for generating improved memory performance. Subjects discriminated repeated versus initial image presentations intermixed within a continuous recognition task. Half of initial presentations were multisensory, and all repetitions were only visual. Experiment 1 examined whether purely episodic multisensory information suffices for enhancing later discrimination performance by pairing visual objects with either tones or vibrations. We could therefore also assess whether effects can be elicited with different sensory pairings. Experiment 2 examined semantic context by manipulating the congruence between auditory and visual object stimuli within blocks of trials. Relative to images only encountered visually, accuracy in discriminating image repetitions was significantly impaired by auditory-visual, yet unaffected by somatosensory-visual multisensory memory traces. By contrast, this accuracy was selectively enhanced for visual stimuli with semantically congruent multisensory pasts and unchanged for those with semantically incongruent multisensory pasts. The collective results reveal opposing effects of purely episodic versus semantic information from auditory-visual multisensory events. Nonetheless, both types of multisensory memory traces are accessible for processing incoming stimuli and indeed result in distinct visual object processing, leading to either impaired or enhanced performance relative to unisensory memory traces. We discuss these results as supporting a model of object-based multisensory interactions.
Resumo:
Cells defective in any of the RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) are sensitive to DNA cross-linking agents and to ionizing radiation. Because the paralogs are required for the assembly of DNA damage-induced RAD51 foci, and mutant cell lines are defective in homologous recombination and show genomic instability, their defect is thought to be caused by an inability to promote efficient recombinational repair. Here, we show that the five paralogs exist in two distinct complexes in human cells: one contains RAD51B, RAD51C, RAD51D, and XRCC2 (defined as BCDX2), whereas the other consists of RAD51C with XRCC3. Both protein complexes have been purified to homogeneity and their biochemical properties investigated. BCDX2 binds single-stranded DNA and single-stranded gaps in duplex DNA, in accord with the proposal that the paralogs play an early (pre-RAD51) role in recombinational repair. Moreover, BCDX2 complex binds specifically to nicks in duplex DNA. We suggest that the extreme sensitivity of paralog-defective cell lines to cross-linking agents is owing to defects in the processing of incised cross links and the consequential failure to initiate recombinational repair at these sites.
Resumo:
OBJECTIVE: To assess the outcome of patients with ruptured descending thoracic and thoracoabdominal aortic aneurysms undergoing emergency repair, in comparison to elective surgery for chronic lesions. METHODS: A prospective study of 100 consecutive patients operated upon the descending aorta (1-8 segments) using proximal unloading and distal protection with partial cardiopulmonary bypass, heparin surface-coated perfusion equipment and low systemic heparinization (loading dose 100 IU/kg, activated coagulation time > 180 s), staged cross-clamping, sealed grafts and graft inclusion. RESULTS: Arteriosclerotic lesions were present in 53/100 patients (53%) for all, 30/53 (56%) for chronic, and 21/33 (63%) for ruptured, aneurysms (NS). Dissecting lesions were found in 38/100 patients (38%) for all, 20/53 (38%) for chronic, and 8/33 (24%) for ruptured aneurysms (NS). Preoperative hematocrit was 38 +/- 6% for all, 40 +/- 5% for chronic, and 33 +/- 5% for ruptured aneurysmal patients (P < 0.001 ruptured versus chronic). The extent of aortic repair (1-8 segments) was 3.3 +/- 1.6 for all, 3.5 +/- 1.5 for chronic, and 3.2 +/- 1.4 for ruptured, aneurysms (NS). Transdiaphragmatic repair was performed in 51/100 (51%) of all, 28/53 (53%) of chronic, and 17/33 (51%) of ruptured aneurysms (NS). Aortic cross-clamp time was 38 +/- 21 min for all, 39 +/- 24 min for chronic, and 38 +/- 17 min for ruptured, aneurysmal patients (NS). The amount of red cells washed and autotransfused was 2792 +/- 2239 ml in all, 3143 +/- 2531 ml in chronic, and 2074 +/- 1350 ml in ruptured, aneurysmal patients (P < 0.025). The amount of packed red cells required was 2181 +/- 1830 ml for all, 1736 +/- 1333 ml for chronic, and 2947 +/- 2395 ml for ruptured aneurysmal patients (P < 0.010). Thirty-day mortality was 9/100 (9%) for all, 3/53 (6%) for chronic, and 5/33 (15%) for ruptured aneurysmal patients (NS). Parapareses/plegias occurred in 9/100 (9%) of all, 6/53 (11%) of chronic, and 3/33 (9%) of ruptured, aneurysmal patients (NS). Stepwise regression analysis identified aortic cross-clamp time as a predictor of early mortality (P = 0.002) and parapareses and paraplegias (P = 0.001). Age (P = 0.001), extent of repair (P = 0.008) and preoperative hematocrit (P = 0.001) were predictors for homologous transfusion requirements. CONCLUSION: Emergency repair of ruptured descending thoracic and thoracoabdominal aortic aneurysms can be achieved with acceptable results.
Resumo:
Double-strand breaks (DSBs) occur frequently during DNA replication. They are also caused by ionizing radiation, chemical damage or as part of the series of programmed events that occur during meiosis. In yeast, DSB repair requires RAD52, a protein that plays a critical role in homologous recombination. Here we describe the actions of human RAD52 protein in a model system for single-strand annealing (SSA) using tailed (i.e. exonuclease resected) duplex DNA molecules. Purified human RAD52 protein binds resected DSBs and promotes associations between complementary DNA termini. Heteroduplex intermediates of these recombination reactions have been visualized by electron microscopy, revealing the specific binding of multiple rings of RAD52 to the resected termini and the formation of large protein complexes at heteroduplex joints formed by RAD52-mediated annealing.
Resumo:
The ribonucleotide reductase gene tandem bnrdE/bnrdF in SPbeta-related prophages of different Bacillus spp. isolates presents different configurations of intervening sequences, comprising one to three of six non-homologous splicing elements. Insertion sites of group I introns and intein DNA are clustered in three relatively short segments encoding functionally important domains of the ribonucleotide reductase. Comparison of the bnrdE homologs reveals mutual exclusion of a group I intron and an intein coding sequence flanking the codon that specifies a conserved cysteine. In vivo splicing was demonstrated for all introns. However, for two of them a part of the mRNA precursor molecules remains unspliced. Intergenic bnrdE-bnrdF regions are unexpectedly long, comprising between 238 and 541 nt. The longest encodes a putative polypeptide related to HNH homing endonucleases.
Resumo:
Allogeneic MHC-incompatible organ or cell grafts are usually promptly rejected by immunocompetent hosts. Here we tested allogeneic beta-islet cell graft acceptance by immune or naive C57BL/6 mice rendered diabetic with streptozotocin (STZ). Fully MHC-mismatched insulin-producing growth-regulated beta-islet cells were transplanted under the kidney capsule or s.c. Although previously or simultaneously primed mice rejected grafts, STZ-treated diabetic mice accepted islet cell grafts, and hyperglycemia was corrected within 2-4 weeks in absence of conventional immunosuppression. Allogeneic grafts that controlled hyperglycemia expressed MHC antigens, were not rejected for >100 days, and resisted a challenge by allogeneic skin grafts or multiple injections of allogeneic cells. Importantly, the skin grafts were rejected in a primary fashion by the grafted and corrected host, indicating neither tolerization nor priming. Such strictly extralymphatic cell grafts that are immunologically largely ignored should be applicable clinically.
Resumo:
The alpha 1B-adrenergic receptor (alpha 1BAR) and its truncated mutant T368 lacking the last 147 amino acids were stably expressed in Rat1 fibroblasts. The wild type alpha 1BAR was rapidly phosphorylated upon exposure to the agonist epinephrine as well as to phorbol ester as assessed by immunoprecipitation of the receptor with antiserum raised against its amino-terminal portion. Exposure of cells expressing the wild type alpha 1BAR to epinephrine resulted also in rapid homologous desensitization of receptor-mediated response on polyphosphoinositide hydrolysis. On the other hand, truncation of the serine- and threonine-rich carboxyl portion of the alpha 1BAR abolished agonist-induced phosphorylation and greatly impaired homologous desensitization of the receptor. The truncated receptor T368 could undergo agonist-induced decrease of cell surface receptors but to a lesser extent, as compared with the wild type alpha 1BAR. These results demonstrate that the carboxyl portion of the alpha 1BAR plays a crucial role in the regulation of receptor function. They also suggest a strong relationship between agonist-induced phosphorylation and desensitization of the alpha 1BAR, which were both insensitive to the inhibitor of protein kinase C RO-318220. Our findings support the emerging hypothesis that the biochemical mechanisms involved in rapid agonist-dependent regulation of G protein-coupled receptors, which activate polyphosphoinositide hydrolysis, do not primarily involve protein kinase C.
Resumo:
Non-coding small RNAs (sRNAs) have important regulatory functions in bacteria. In Pseudomonas spp., about 40 sRNAs have been reported until the end of 2008, a number that almost certainly is an underestimate. We provide a summary of the coding regions for these sRNAs is Pseudomonas aeruginosa. The functions of some Pseudomonas sRNAs can be deduced from those of homologous well-characterized sRNAs of Escherichia coli, e.g. 6S RNA (a stationary phase regulator of RNA polymerase) and tmRNA (a component of a machinery serving to eliminate truncated polypeptides). Two sRNAs of P. aeruginosa, PrrF1 and PrrF2, whose expression is repressed by the Fur repressor in the presence of iron, inhibit translation initiation of mRNAs specifying superoxide dismutase (sodB), succinate dehydrogenase (sdhABCD) and anthranilate degradation (antABC), via a base-paring mechanism. As a consequence, these mRNAs are poorly expressed under conditions of iron limitation. Two further sRNAs of P. aeruginosa, RsmY and RsmZ, whose expression is positively controlled by the GacS/GacA two-component system in response to unknown signals, act as scavengers of the RNA-binding protein RsmA. In this way, translational repression exerted by RsmA on target mRNAs can be relieved. The Gac/Rsm signal transduction pathway globally regulates motility and the formation of extracellular products in pseudomonas spp.
Resumo:
Type 2 diabetes (T2D) is characterized by β cell dysfunction and loss. Single nucleotide polymorphisms in the T-cell factor 7-like 2 (TCF7L2) gene, associated with T2D by genome-wide association studies, lead to impaired β cell function. While deletion of the homologous murine Tcf7l2 gene throughout the developing pancreas leads to impaired glucose tolerance, deletion in the β cell in adult mice reportedly has more modest effects. To inactivate Tcf7l2 highly selectively in β cells from the earliest expression of the Ins1 gene (∼E11.5) we have therefore used a Cre recombinase introduced at the Ins1 locus. Tcfl2(fl/fl)::Ins1Cre mice display impaired oral and intraperitoneal glucose tolerance by 8 and 16 weeks, respectively, and defective responses to the GLP-1 analogue liraglutide at 8 weeks. Tcfl2(fl/fl)::Ins1Cre islets displayed defective glucose- and GLP-1-stimulated insulin secretion and the expression of both the Ins2 (∼20%) and Glp1r (∼40%) genes were significantly reduced. Glucose- and GLP-1-induced intracellular free Ca(2+) increases, and connectivity between individual β cells, were both lowered by Tcf7l2 deletion in islets from mice maintained on a high (60%) fat diet. Finally, analysis by optical projection tomography revealed ∼30% decrease in β cell mass in pancreata from Tcfl2(fl/fl)::Ins1Cre mice. These data demonstrate that Tcf7l2 plays a cell autonomous role in the control of β cell function and mass, serving as an important regulator of gene expression and islet cell coordination. The possible relevance of these findings for the action of TCF7L2 polymorphisms associated with Type 2 diabetes in man is discussed.
Resumo:
The Bacillus subtilis strain 168 chromosomal region extending from 109 degrees to 112 degrees has been sequenced. Among the 35 ORFs identified, cotT and rapA were the only genes that had been previously mapped and sequenced. Out of ten ORFs belonging to a single putative transcription unit, seven are probably involved in hexuronate catabolism. Their sequences are homologous to Escherichia coli genes exuT, uidB, uxaA, uxaB, uxaC, uxuA and uxuB, which are all required for the uptake of free D-glucuronate, D-galacturonate and beta-glucuronide, and their transformation into glyceraldehyde 3-phosphate and pyruvate via 2-keto-3-deoxygluconate. The remaining three ORFs encode two dehydrogenases and a transcriptional regulator. The operon is preceded by a putative catabolite-responsive element (CRE), located between a hypothetical promoter and the RBS of the first gene. This element, the longest and the only so far described that is fully symmetrical, consists of a 26 bp palindrome matching the theoretical B. subtilis CRE sequence. The remaining predicted amino acid sequences that share homologies with other proteins comprise: a cytochrome P-450, a glycosyltransferase, an ATP-binding cassette transporter, a protein similar to the formate dehydrogenase alpha-subunit (FdhA), protein similar to NADH dehydrogenases, and three homologues of polypeptides that have undefined functions.
Resumo:
Apoptosis is critically dependent on the presence of the ced-3 gene in Caenorhabditis elegans, which encodes a protein homologous to the mammalian interleukin (IL)-1 beta-converting enzyme (ICE). Overexpression of ICE or ced-3 promotes apoptosis. Cytotoxic T lymphocyte-mediated rapid apoptosis is induced by the proteases granzyme A and B. ICE and granzyme B share the rare substrate site of aspartic acid, after which amino acid cleavage of precursor IL-1 beta (pIL-1 beta) occurs. Here we show that granzyme A, but not granzyme B, converts pIL-1 beta to its 17-kD mature form. Major cleavage occurs at Arg120, four amino acids downstream of the authentic processing site, Asp116. IL-1 beta generated by granzyme A is biologically active. When pIL-1 beta processing is monitored in lipopolysaccharide-activated macrophage target cells attacked by cytotoxic T lymphocytes, intracellular conversion precedes lysis. Prior granzyme inactivation blocks this processing. We conclude that the apoptosis-inducing granzyme A and ICE share at least one downstream target substrate, i.e., pIL-1 beta. This suggests that lymphocytes, by means of their own converting enzyme, could initiate a local inflammatory response independent of the presence of ICE.
Resumo:
Hydrocarbon distributions and stable isotope ratios of carbonates (delta(13)C(car), delta(18)O(car)), kerogen (delta(13)C(ker)), extractable organic matter (delta(13)C(EOM)) and individual hydrocarbons of Liassic black shale samples from a prograde metamorphic sequence in the Swiss Alps were used to identify the major organic reactions with increasing metamorphic grade. The studied samples range from the diagenetic zone (< 100 degrees C) to amphibolite facies (similar to 550 degrees C). The samples within the diagenetic zones (< 100 and 150 degrees C) are characterized by the dominance of C-< 20 n-alkanes, suggesting an origin related with marine and/or bacterial inputs. The metamorphic samples (200 to 550 degrees C) have distributions significantly dominated by C-12 and C-13 n-alkanes, C-14, C-16 and C-18 n-alkylcyclopentanes and to a lesser extend C-15, C-17 and C-21 n-alkylcyclohexanes. The progressive C-13-enrichment (up to 3.9 parts per thousand) with metamorphism of the C-> 17 n-alkanes suggests the occurrence of cracking reactions of high molecular weight compounds. The isotopically heavier (up to 5.6 parts per thousand) C-< 17 n-alkanes in metamorphic samples are likely originated by thermal degradation of long-chain homologous with preferential release of isotopically light C-1 and C-2 radicals. The dominance of specific even C-number n-alkylcyclopentanes suggests an origin related to direct cyclization mechanism (without decarboxylation step) of algal or bacterial fatty acids occurring in reducing aqueous metamorphic fluid conditions. The regular increase of the concentrations of n-alkylcycloalkanes vs. C-> 13 n-alkanes with metamorphism suggests progressive thermal release of kerogen-linked fatty acid precursors and degradation of n-alkanes. Changes of the steroid and terpenoid distributions are clearly related to increasing metamorphic temperatures. The absence of 18 alpha(H)-22,29,30-trisnorneohopane (Ts), the occurrence of 17 beta(H)-trisnorhopane, 17 beta(H), 21 alpha(H)-hopanes in the C-29 to C-31 range and 5 alpha(H),14 alpha(H),17 alpha(H)-20R C-27, C-29 steranes in the low diagenetic samples (< 100 degrees C) are characteristic of immature bitumens. The higher thermal stress within the upper diagenetic zone (150 degrees C) is marked by the presence of Ts, the disappearance of 17 beta(H)-trisnorhopane and thermodynamic equilibrium of the 22S/(22S + 22R) homohopane ratios. The increase of the alpha alpha alpha-sterane 20S/(20S + 20R) and 20R beta beta/(beta beta + alpha alpha) ratios (from 0.0 to 0.55 and from 0.0 to 0.40, respectively) in the upper diagenetic zone indicates the occurrence of isomerization reactions already at < 150 degrees C. However, the isomerization at C-20 (R -> S) reaches thermodynamic equilibrium values already at the upper diagenesis (similar to 150 degrees C) whereas the epimerisation at C-14 and C-17 (alpha alpha ->beta beta) arrives to constant values in the lower anchizone (similar to 200 degrees C). The ratios Ts vs. 17 alpha(H)-22,29,30-trisnorneohopane [(Ts/(Ts + Tm)] and 18 alpha(H)-30-norneohopane (C29Ts) vs. 17 alpha(H),21 beta(H)-30-norhopane [C29Ts/(C29Ts + C-29)] increase until the medium anchizone (200 to 250 degrees C) from 0.0 to 0.96 and from 0.0 to 0.44, respectively. An opposite trend owards lower values is observed in the higher metamorphic samples. The occurrence of specific hydrocarbons (e.g., n-alkylcyclopentanes, cadalene, hydrogenated aromatic compounds) in metamorphic samples points to kerogen degradation reactions most probably occurring in the presence of water and under reducing conditions. The changes of hydrocarbon distributions and carbon isotopic compositions of n-alkanes related to metamorphism suggest that the organic geochemistry may help to evaluate the lowest grades of prograde metamorphism. Copyright (c) 2005 Elsevier Ltd.
Resumo:
Penicillin tolerance is an incompletely understood phenomenon that allows bacteria to resist drug-induced killing. Tolerance was studied with independent Streptococcus gordonii mutants generated by cyclic exposure to 500 times the MIC of penicillin. Parent cultures lost 4 to 5 log(10) CFU/ml of viable counts/24 h. In contrast, each of four independent mutant cultures lost < or =2 log(10) CFU/ml/24 h. The mutants had unchanged penicillin-binding proteins but contained increased amounts of two proteins with respective masses of ca. 50 and 45 kDa. One mutant (Tol1) was further characterized. The two proteins showing increased levels were homologous to the arginine deiminase and ornithine carbamoyl transferase of other gram-positive bacteria and were encoded by an operon that was >80% similar to the arginine-deiminase (arc) operon of these organisms. Partial nucleotide sequencing and insertion inactivation of the S. gordonii arc locus indicated that tolerance was not a direct consequence of arc alteration. On the other hand, genetic transformation of tolerance by Tol1 DNA always conferred arc deregulation. In nontolerant recipients, arc was repressed during exponential growth and up-regulated during postexponential growth. In tolerant transformants, arc was constitutively expressed. Tol1 DNA transformed tolerance at the same rate as transformation of a point mutation (10(-2) to 10(-3)). The tolerance mutation mapped on a specific chromosomal fragment but was physically distant from arc. Importantly, arc deregulation was observed in most (6 of 10) of additional independent penicillin-tolerant mutants. Thus, although not exclusive, the association between arc deregulation and tolerance was not fortuitous. Since penicillin selection mimicked the antibiotic pressure operating in the clinical environment, arc deregulation might be an important correlate of naturally occurring tolerance and help in understanding the mechanism(s) underlying this clinically problematic phenotype.
Resumo:
We have recently cloned the human homologue of the murine pT49 cDNA (hpT49h), a transcript encoding a protein homologous to the beta- and gamma-chains of fibrinogen. Here, we report the identification of the hpT49h gene product using mAbs generated against a peptide corresponding to the carboxyl-terminal end of the deduced protein and a recombinant protein fragment expressed in Escherichia coli. mAbs 23A6, 7B12, and 3F4 specifically recognized a protein of 70 kDa in reducing SDS-PAGE in the culture supernatant of 293T cells transiently transfected with the full length hpT49h cDNA and freshly isolated PBMC. Under nonreducing conditions, the material migrated with a molecular mass of 250 to 300 kDa, indicating that the 70-kDa protein forms a disulfide bonded complex. Because of its homology with fibrinogen, we have termed this protein fibroleukin. Fibroleukin is spontaneously secreted in vitro by freshly isolated CD4+ and CD8+ T lymphocytes. RT-PCR analysis revealed preferential expression of fibroleukin mRNA in memory T lymphocytes (CD3+/CD45R0+) compared with naive T lymphocytes (CD3+/CD45RA+). Fibroleukin production by PBMC was rapidly lost in culture. Production could be partially maintained in the presence of IFN-gamma, while T lymphocyte activation had no effect. To demonstrate fibroleukin production in vivo, we analyzed colon mucosa by immunohistology. Fibroleukin staining was detected in the extracellular matrix of the T lymphocyte-rich upper portion of the lamina propria mucosa. While the exact function of fibroleukin remains to be defined, these data suggest that fibroleukin may play a role in physiologic lymphocyte functions at mucosal sites.