87 resultados para high-frequency
Resumo:
In lateralized Lexical Decision Tasks (LDT), accuracy is commonly higher and reaction times are commonly faster for right visual field (RVF) than left visual field (LVF) presentations. This visual field differences are thought to demonstrate the left hemisphere's dominance for language. Unfortunately, different tasks and words are used between studies and languages making direct comparisons difficult. For example, high frequency words show a performance advantage over low frequency words. Moreover, demographic variables impact on lateralized behavior such as language knowledge (one versus several, early acquired versus late acquired). We here aim to alleviate some of these obstacles by presenting results from a lateralized LDT for which we selected words between 4 and 6 letters used in five different languages, i.e. English, French, German, Dutch and Italian. In this first study using these words, we compared performance of right- and left-handed students being either early or late bilinguals (acquired before or after the age of 6 years) from a French-speaking University in Switzerland. Results showed a left hemispheric advantage (accuracy, reaction times) for all groups, with a trend for early as compared to late bilinguals to be less accurate and taking longer in lexical decisions. These results show that the current words result in solid visual field differences, and do so irrespective of how many languages are spoken. While early bilinguals might experience a slight performance disadvantage, it was not affecting visual field differences.
Resumo:
Genome-wide scans of genetic differentiation between hybridizing taxa can identify genome regions with unusual rates of introgression. Regions of high differentiation might represent barriers to gene flow, while regions of low differentiation might indicate adaptive introgression-the spread of selectively beneficial alleles between reproductively isolated genetic backgrounds. Here we conduct a scan for unusual patterns of differentiation in a mosaic hybrid zone between two mussel species, Mytilus edulis and M. galloprovincialis. One outlying locus, mac-1, showed a characteristic footprint of local introgression, with abnormally high frequency of edulis-derived alleles in a patch of M. galloprovincialis enclosed within the mosaic zone, but low frequencies outside of the zone. Further analysis of DNA sequences showed that almost all of the edulis allelic diversity had introgressed into the M. galloprovincialis background in this patch. We then used a variety of approaches to test the hypothesis that there had been adaptive introgression at mac-1. Simulations and model fitting with maximum-likelihood and approximate Bayesian computation approaches suggested that adaptive introgression could generate a "soft sweep," which was qualitatively consistent with our data. Although the migration rate required was high, it was compatible with the functioning of an effective barrier to gene flow as revealed by demographic inferences. As such, adaptive introgression could explain both the reduced intraspecific differentiation around mac-1 and the high diversity of introgressed alleles, although a localized change in barrier strength may also be invoked. Together, our results emphasize the need to account for the complex history of secondary contacts in interpreting outlier loci.
Resumo:
Objective: Although 24-hour arterial blood pressure can be monitored in a free-moving animal using pressure telemetric transmitter mostly from Data Science International (DSI), accurate monitoring of 24-hour mouse left ventricular pressure (LVP) is not available because of its insufficient frequency response to a high frequency signal such as the maximum derivative of mouse LVP (LVdP/dtmax and LVdP/dtmin). The aim of the study was to develop a tiny implantable flow-through LVP telemetric transmitter for small rodent animals, which can be potentially adapted for human 24 hour BP and LVP accurate monitoring. Design and Method: The mouse LVP telemetric transmitter (Diameter: _12 mm, _0.4 g) was assembled by a pressure sensor, a passive RF telemetry chip, and to a 1.2F Polyurethane (PU) catheter tip. The device was developed in two configurations and compared with existing DSI system: (a) prototype-I: a new flow-through pressure sensor with wire link and (b) prototype-II: prototype-I plus a telemetry chip and its receiver. All the devices were applied in C57BL/6J mice. Data are mean_SEM. Results: A high frequency response (>100 Hz) PU heparin saline-filled catheter was inserted into mouse left ventricle via right carotid artery and implanted, LV systolic pressure (LVSP), LVdP/dtmax, and LVdP/dtmin were recorded on day2, 3, 4, 5, and 7 in conscious mice. The hemodynamic values were consistent and comparable (139_4 mmHg, 16634_319, - 12283_184 mmHg/s, n¼5) to one recorded by a validated Pebax03 catheter (138_2mmHg, 16045_443 and -12112_357 mmHg/s, n¼9). Similar LV hemodynamic values were obtained with Prototype-I. The same LVP waveforms were synchronically recorded by Notocord wire and Senimed wireless software through prototype-II in anesthetized mice. Conclusion: An implantable flow-through LVP transmitter (prototype-I) is generated for LVP accurate assessment in conscious mice. The prototype-II needs a further improvement on data transmission bandwidth and signal coupling distance to its receiver for accurate monitoring of LVP in a freemoving mouse.
Resumo:
Combining nuclear (nuDNA) and mitochondrial DNA (mtDNA) markers has improved the power of molecular data to test phylogenetic and phylogeographic hypotheses and has highlighted the limitations of studies using only mtDNA markers. In fact, in the past decade, many conflicting geographic patterns between mitochondrial and nuclear genetic markers have been identified (i.e. mito-nuclear discordance). Our goals in this synthesis are to: (i) review known cases of mito-nuclear discordance in animal systems, (ii) to summarize the biogeographic patterns in each instance and (iii) to identify common drivers of discordance in various groups. In total, we identified 126 cases in animal systems with strong evidence of discordance between the biogeographic patterns obtained from mitochondrial DNA and those observed in the nuclear genome. In most cases, these patterns are attributed to adaptive introgression of mtDNA, demographic disparities and sex-biased asymmetries, with some studies also implicating hybrid zone movement, human introductions and Wolbachia infection in insects. We also discuss situations where divergent mtDNA clades seem to have arisen in the absence of geographic isolation. For those cases where foreign mtDNA haplotypes are found deep within the range of a second taxon, data suggest that those mtDNA haplotypes are more likely to be at a high frequency and are commonly driven by sex-biased asymmetries and/or adaptive introgression. In addition, we discuss the problems with inferring the processes causing discordance from biogeographic patterns that are common in many studies. In many cases, authors presented more than one explanation for discordant patterns in a given system, which indicates that likely more data are required. Ideally, to resolve this issue, we see important future work shifting focus from documenting the prevalence of mito-nuclear discordance towards testing hypotheses regarding the drivers of discordance. Indeed, there is great potential for certain cases of mitochondrial introgression to become important natural systems within which to test the effect of different mitochondrial genotypes on whole-animal phenotypes.
Resumo:
Summary One of the major goals of cancer immunotherapy is the induction of a specific and effective antitumor cytotoxic T lymphocyte (CTL) response. However, the downregulation of Class I Major Histocompatibility Complexes (MHC) expression and the low level of tumor peptide presentation on tumor cell surface, ás well as the low immunogenicity of tumor specific antigens, limit the effectiveness of anti-tumor CTL responses. On the other hand, monoclonal antibodies, which bind with high affinity to tumor cell surface markers, are powerful tumor targeting tools. However, their capacity to .kill cancer cells is limited and mAb cancer treatments usually require the addition of different form of chemotherapy. The new cancer immunotherapy strategy described herein combines the advantage of the high tumor targeting capacity of monoclonal antibodies (mAb) with the powerful cytotoxicity of CD8 T lymphocytes directed against highly antigenic peptide-MHC complexes. Monoclonal antibody Fab fragments directed against a cell surface tumor associated antigen (TAA) are chemically coupled to soluble MHC class I complexes carrying a highly antigenic peptide. Antibody guided targeting and oligomerization of numerous antigenic class IMHC/peptide complexes on tumor cell surfaces can redirect the cytotoxicity of peptide-specific CD8 T cells towards target cancer cells. After the description of the production of murine anti-tumor xMHC/peptide conjugates in the first part of this thesis, the therapeutic potential of such conjugates were sequentially investigated in different syngeneic tumor mouse models. As a first proof of principle, transgenic OT-1 mice and later CEA transgenic C57BL/6 (B6) mice, adoptively transferred with OT-1 spleen cells and immunized with ovalbumin, were used as a model of high frequency of ova peptide specific T cells. In these mice, growth inhibition and regression of palpable colon carcinoma expressing CEA, were obtained by systemic injection of anti-CEA Fab/H-2Kb/ova peptide conjugates. Next, LCMV virus and influenza virus infection of B6 mice were used as viral models to redirect natural antiviral CTL responses to tumors via conjugates loaded with viral peptides. We showed that in mice infected with the LCMV virus, subcutaneous CEA-expressing tumor cells were inhibited by the H2Db/GP33 restricted anti-viral CTL response when preincubated before grafting with anti-CEA Fab-H-2Db/GP33 peptide conjugates. In mice infected with the influenza virus, lung metastases expressing the HER2 antigen were inhibited by the H-2Db/NP366 restricted CTLs response when preincubated before injection with anti-Her2 Fab-H-2Db/NP366 peptide conjugates. In the last chapter, the stability of the peptide in the anti-CEA Fab-H-2Db/GP33 conjugates was improved by the covalent photocross-link of the GP33 peptide in the H-2Db MHC groove. Thus, LCMV immune mice could reject CEA expressing tumors when treated with systemic injections of anti-CEA FabH-2Db/GP33 cross-linked conjugates. These results are encouraging for the potential application of this strategy in clinic. Such conjugates could be used alone in patients boosted by the relevant virus, or used in combination with existing T cell based ìmmunotherapy. Résumé Une des principales approches utilisées dans l'immunothérapie contre le cancer consiste en l'induction d'une réponse T cytotoxique (CTL) spécifiquement dirigée contre la tumeur. Cependant, le faible niveau d'expression des complexes majeurs d'histocompatibilité de classe I (CMH I) et de présentation des peptides tumoraux à la surface des cellules cancéreuses ainsi que la faible immunogenicité des antigens tumoraux, limitent l'efficacité de la réponse CTL. D'autre part,. l'injection d'anticorps monoclonaux (mAb), se liant avec une haute affinité aux marqueurs de surface des cellules tumorales, a fourni des résultats cliniques encourageant. Cependant l'efficacité de ces mAbs contre des tumeur solides reste limitée et necessite souvent l'addition de chimiotherapie. La nouvelle stratégie thérapeutique décrite dans ce travail associe le fort pouvoir de localisation des anticorps monoclonaux et le fort pouvoir cytotoxique des lymphocytes T CD8+. Des fragments Fab d'anticorps monoclonaux, dirigés contre des antigènes surexprimés à la surface de cellules tumorales, ont été chimiquement couplés à des CMH I solubles, portant un peptide fortement antigénique. Le ciblage et l'oligomérisation à la surface des cellules tumorales de nombreux CMH I présentant un peptide antigénique, va réorienter la cytotoxicité des cellules T CD8+ spécifiques du peptide présenté, vers les cellules tumorales cibles. Après une description de la production de conjugé anti-tumeur x CMH Upeptide dans la première partie de cette thèse, le potentiel thérapeutique de tels conjugés a été successivement étudiés in vivo dans différents modèles de tumeur syngénéiques. Tout d'abord, des souris OT-1 transgéniques, puis des souris C57BL/6 (B6) transférées avec des cellules de rate OT-1 puis immunisées avec l'ovalbumine, ont été employées comme modèle de haute fréquence de cellules T CD8+ spécifiques du peptide ova. Chez ces souris, l'inhibition de la croissance et la régression de nodules palpables de carcinomes exprimant l'antigène caccino embryonaire (ACE), ont été obtenues par l'injection systémique de conjugés anti-ACE Fab/H-2Kb/ova. Par la suite, l'infection de souris B6 par le virus LCMV et par le virus de la grippe, ont été utilisés comme modèles viraux pour redirigées des réponses anti-virales naturelles vers les tumeurs, en utilisant des conjugés chargés avec des peptides viraux. Nous avons montré que .chez les souris infectées par le LCMV, la croissance de carcinome sous-cutané est empêchée par la réponse anti-virale, spécifique du complexe H2Db/GP33, lorsque les cellules tumorales greffées sont pré-incubées avec des conjugés anti-CEA Fab-H-2Db/GP33. Dans le cas de souris infectées par le virus de la grippe, la métastatisation de mélanomes pulmonaires exprimant l'antigène HER-2 est inhibée par la réponse anti-virale spécifique du complexe H-2Db/NP366, après pré-incubation des cellules tumorales avec des conjugés anti-Her2 FabxH-2Db/NP366. Dans le dernier chapitre, la liaison covalente du peptide GP33 dans le complexe H-2Db a amélioré la stabilité des conjugés correspondants et a permis le traitement systémique de souris greffées avec des tumeurs exprimant l'ACE et infectées par le LCMV. L'ensemble de ces résultats sont encourageant pour l'application de cette strategie en clinique. De tels conjugués pourraient être employés seuls ou en combinaison avec des protocols d'immunisation peptidique anti-tumoral. Résumé pour un large public Dans les pays industrialisés, le cancer se situe au deuxième rang des causes de mortalité après les maladies cardiovasculaires. Les principaux traitement de nombreux cancers sont la chirurgie, en association avec la radiothérapie et la chimiothérapie. L'immunothérapie est l'une des nouvelles approches mises en oeuvre pour la lutte contre le cancer. Elle peut être humorale, et s'appuyer alors sur la perfusion d'anticorps monoclonaux dirigés contre des antigènes tumoraux, par exemple les anticorps dirigés contre les protéines oncogéniques Her-2/neu dans le cancer du sein. Ces anticorps ont le grand avantage de spécifiquement se localiser à la tumeur et d'induire la lyse ou d'inhiber la proliferation des cellules tumorales exprimant l'antigène. Certains sont utilisés en clinique pour le traitement de lymphomes, de carcinomes de l'ovaire et du sein ou encore de carcinomes metastatiques du côlon. Cependant l'efficacité de ces anticorps contre des tumeurs solides reste limitée et les traitements exigent souvent d'être combiner avec de la chimiothérapie. L'immunothérapie spécifique peut également être cellulaire et reposer sur une démarche de type vaccinal, consistant à générer des lymphocytes T cytotoxiques (cytotoxic T lymphocytes :CTL) capables de détruire spécifiquement les cellules malignes. Pour obtenir une réponse lymphocytaire T cytotoxique antitumorale, la cellule T doit reconnaître un antigène associé à la tumeur, présenté sous forme de peptide dans un complexe majeur d'histocompatibilité de classe I. Or les cellules tumorales ne presentent pas efficacement les peptides antigèniques, car elles se caractérisent par une diminution ou une absence d'expression des antigènes d'histocompatibilité de classe I, des molécules d'adhésion et des cytokines costimulatrices, et par une faible expression des antigènes associés aux tumeurs. C'est en partie pourquoi, malgré l'induction de fortes réponses CTL specifiquement dirigés contre des antigens tumoraux, les régressions tumorales obtenus grace à ces vaccinations sont relativement rares. Alors que chez les personnes atteintes du cancer on observe l'instauration d'une tolérance immunitaire vis-à-vis de la tumeur, à l'inverse, notre systeme immunitaire reste parfaitement capable de combattre des infection virales classiques, tels que la grippe, qui font aussi appel à une réponse T cytotoxique. Notre groupe de recherche a donc eu l'idee de développer une nouvelle approche thérapeutique où une réponse immunitaire anti-virale très efficace serait redirigée vers les tumeurs par des anticorps monoclonaux. Concrètement, nous avons chimiquement couplés des fragments d'anticorps monoclonaux dirigés contre des antigènes surexprimés à la surface de cellules tumorales, à des CMH I portant un peptide viral antigénique. Les cellules tumorales, ciblées par le fragment anticorps et couvertes d' antigènes viraux présentés par des molécules de CMH I, peuvent ainsi tromper les lymphocytes cytotoxiques anti-viraux qui vont détruire les cellules tumorales comme si elles étaient infectées par le virus. Suite à des résultats prometteurs obtenus in vitro avec différents conjugués anticorps-CMH humain de type HLA.A2/peptide Flu, le but du projet était de tester in vivo des conjugués anticorps-CMH I murins sur des modèles expérimentaux de souris. Tout d'abord, des souris transgéniques pour un recepteur T specifique du peptide ova, puis des transferts adoptifs de ces cellules T specifiques dans des souris immunocompétentes, ont été choisi comme modèle de haute fréquence des cellules T spécifiques, et ont permi de valider le principe de la strategie in vivo. Puis, deux modèles viraux ont été elaboré avec le virus LCMV et le virus Influenza, pour réorienter des réponses antivirales naturelles vers les tumeurs grâce à des conjugés chargés avec des peptides viraux. Nous avons montré la grande capacité de nos conjugués à rediriger des réponses cytotoxiques vers les tumeurs et inhiber la croissance de tumeurs syngénéiques sous cutanés et pulmonaires. Ces résultats d'inhibition tumorales obtenus dans des souris immunocompétentes, grâce à l'injection de conjugués anticorps xCMH/peptide et réorientant deux réponses antivirales différentes vers deux modèles tumoraux syngeneiques, sont encourageant pour l'application de cette nouvelle stratégie en clinique.
Resumo:
To determine whether skin blood flow is local or takes part in general regulatory mechanisms, we recorded laser-Doppler flowmetry (LDF; left and right index fingers), blood pressure, muscle sympathetic nerve activity (MSNA), R-R interval, and respiration in 10 healthy volunteers and 3 subjects after sympathectomy. We evaluated 1) the synchronism of LDF fluctuations in two index fingers, 2) the relationship with autonomically mediated fluctuations in other signals, and 3) the LDF ability to respond to arterial baroreflex stimulation (by neck suction at frequencies from 0.02 to 0.20 Hz), using spectral analysis (autoregressive uni- and bivariate, time-variant algorithms). Synchronous LDF fluctuations were observed in the index fingers of healthy subjects but not in sympathectomized patients. LDF fluctuations were coherent with those obtained for blood pressure, MSNA, and R-R interval. LDF fluctuations were leading blood pressure in the low-frequency (LF; 0.1 Hz) band and lagging in the respiratory, high-frequency (HF; approximately 0.25 Hz) band, suggesting passive "downstream" transmission only for HF and "upstream" transmission for LF from the microvessels. LDF fluctuations were responsive to sinusoidal neck suction up to 0.1 Hz, indicating response to sympathetic modulation. Skin blood flow thus reflects modifications determined by autonomic activity, detectable by frequency analysis of spontaneous fluctuations.
Subthalamic nucleus deep brain stimulation for Parkinson's disease : "Are we where we think we are ?
Resumo:
ABSTRACT High frequency electrical deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a worldwide recognized therapy for the motor symptoms of Parkinson's disease in fluctuating patients who are progressively disabled despite medical treatment adjustments. However, such improvements emerge despite a lack of understanding of either the precise role of STN in human motor control or the mechanism(s) of action of DBS. Through the question "are we where we think we are", this thesis is first dedicated to the control of the position of the preoperatively defined target and of the implanted electrodes on magnetic resonance imaging (MRI). This anatomical approach will provide a way to identify more precisely the structure(s) involved by electrical stimulation. Then, a study of the correlation existing between the position of the preoperative target and the position of the electrode is performed. In this part, a unique opportunity is given to identify factors that may affect these correlation results. Finally, the whole work represents a « quality assessment » of the crucial steps of STN DBS: first, the target and the implanted electrode localisation procedures that have been developed in collaboration with the Radiological department; second the implantation procedure that has been performed nowadays on more than 50 parkinsonian patients in the Neurosurgical department of the Centre Hospitalier Universitaire Vaudois in collaboration with the Neurological department. This work is especially addressed to the multidisciplinary medical team involved in the surgical treatment of movement disorders, including also neurophysiologists, neuropsychologists and psychiatrists. RESUME La stimulation électrique à haute fréquence du noyau sous-thalamique est à ce jour mondialement reconnue pour le traitement des symptômes moteurs de la maladie de Parkinson chez des patients sévèrement atteints et chez qui la réponse fluctuante au traitement médicamenteux ne peut être améliorée de façon satisfaisante. Cependant, les résultats observés surviennent malgré une compréhension approximative et controversée du rôle réel du noyau sous-thalamique dans le contrôle du mouvement volontaire aussi bien que des mécanismes d'action de la stimulation cérébrale profonde. A travers la question « sommes-nous où nous pensons être », cette thèse est tout d'abord consacrée à l'étude du contrôle de la position de la cible définie avant l'intervention et de la position des électrodes implantées sur l'imagerie par résonance magnétique (IRM). Cette approche anatomique permettra d'identifier plus précisément la (les) structure(s) influencées par la stimulation électrique. Ensuite, une étude de la corrélation existant entre la position de la cible préopératoire et la position des électrodes implantées est effectuée. Elle a pour but de mettre en évidence les facteurs influençant les résultats de cette corrélation. Enfin, le travail dans son ensemble est un « contrôle de qualité » des étapes cruciales de la stimulation du noyau sous-thalamique : premièrement, des méthodes de localisation de la cible et des électrodes implantées effectuées sur IRM, développées en collaboration avec le service de Radiologie ; deuxièmement, de la méthode d'implantation utilisée à ce jour chez plus de 50 patients dans le service de Neurochirurgie du Centre Hospitalier Universitaire Vaudois en collaboration avec le service de Neurologie. Ce travail s'adresse spécialement aux équipes médicales pluridisciplinaires impliquées dans le traitement chirurgical des mouvements anormaux, incluant également des neurophysiologistes, des neuropsychologues et des psychiatres.
Resumo:
Using H-2Kd-restricted photoprobe-specific cytotoxic T lymphocyte (CTL) clones, which permit assessment of T cell receptor (TCR)-ligand interactions by TCR photoaffinity labeling, we observed that the efficiency of antigen recognition by CTL was critically dependent on the half-life of TCR-ligand complexes. We show here that antigen recognition by CTL is essentially determined by the frequency of serial TCR engagement, except for very rapid dissociations, which resulted in aberrant TCR signaling and antagonism. Thus agonists that were efficiently recognized exhibited rapid TCR-ligand complex dissociation, and hence a high frequency of serial TCR engagement, whereas the opposite was true for weak agonists. Surprisingly, these differences were largely accounted for by the coreceptor CD8. While it was known that CD8 substantially decreases TCR-ligand complex dissociation, we observed in this study that this effect varied considerably among ligand variants, indicating that epitope modifications can alter the CD8 contribution to TCR-ligand binding, and hence the efficiency of antigen recognition by CTL.
Resumo:
BACKGROUND: Diffuse large B-cell lymphomas (DLBCLs) arising in specific extranodal sites have peculiar clinicopathologic features. PATIENTS AND METHODS: We analyzed a cohort of 187 primary Waldeyer's ring (WR) DLBCLs retrieved from GELA protocols using anthracyclin-based polychemotherapy. RESULTS: Most patients (92%) had stage I-II disease. A germinal center B-cell-like (GCB) immunophenotype was observed in 61%, and BCL2 expression in 55%, of WR DLBCLs. BCL2, BCL6, IRF4 and MYC breakpoints were observed in, respectively, 3 of 42 (7%), 9 of 36 (25%), 2 of 26 (8%) and 4 of 40 (10%) contributive cases. A variable follicular pattern was evidenced in 30 of 68 (44%) large biopsy specimens. The 5-year progression-free survival (PFS) and the overall survival (OS) of 153 WR DLBCL patients with survival information were 69.5% and 77.8%, respectively. The GCB immunophenotype correlated with a better OS (P = 0.0015), while BCL2 expression predicted a worse OS (P = 0.037), an effect overcome by the GCB/non-GCB classification. Compared with matched nodal DLBCLs, WR DLBCLs with no age-adjusted international prognostic index factor disclosed a better 5-year PFS rate (77.5% versus 70.7%; P = 0.03). CONCLUSIONS: WR DLBCLs display distinct clinicopathologic features compared with conventional DLBCLs, with usual localized-stage disease, common follicular features and a high frequency of GCB immunophenotype contrasting with a low rate of BCL2 rearrangements. In addition, they seem to be associated with a better outcome than their nodal counterpart.
Resumo:
Both obesity and being underweight have been associated with increased mortality. Underweight, defined as a body mass index (BMI) ≤ 18.5 kg per m(2) in adults and ≤ -2 standard deviations from the mean in children, is the main sign of a series of heterogeneous clinical conditions including failure to thrive, feeding and eating disorder and/or anorexia nervosa. In contrast to obesity, few genetic variants underlying these clinical conditions have been reported. We previously showed that hemizygosity of a ∼600-kilobase (kb) region on the short arm of chromosome 16 causes a highly penetrant form of obesity that is often associated with hyperphagia and intellectual disabilities. Here we show that the corresponding reciprocal duplication is associated with being underweight. We identified 138 duplication carriers (including 132 novel cases and 108 unrelated carriers) from individuals clinically referred for developmental or intellectual disabilities (DD/ID) or psychiatric disorders, or recruited from population-based cohorts. These carriers show significantly reduced postnatal weight and BMI. Half of the boys younger than five years are underweight with a probable diagnosis of failure to thrive, whereas adult duplication carriers have an 8.3-fold increased risk of being clinically underweight. We observe a trend towards increased severity in males, as well as a depletion of male carriers among non-medically ascertained cases. These features are associated with an unusually high frequency of selective and restrictive eating behaviours and a significant reduction in head circumference. Each of the observed phenotypes is the converse of one reported in carriers of deletions at this locus. The phenotypes correlate with changes in transcript levels for genes mapping within the duplication but not in flanking regions. The reciprocal impact of these 16p11.2 copy-number variants indicates that severe obesity and being underweight could have mirror aetiologies, possibly through contrasting effects on energy balance.
Resumo:
Clozapine (CLO), an atypical antipsychotic, depends mainly on cytochrome P450 1A2 (CYP1A2) for its metabolic clearance. Four patients treated with CLO, who were smokers, were nonresponders and had low plasma levels while receiving usual doses. Their plasma levels to dose ratios of CLO (median; range, 0.34; 0.22 to 0.40 ng x day/mL x mg) were significantly lower than ratios calculated from another study with 29 patients (0.75; 0.22 to 2.83 ng x day/mL x mg; P < 0.01). These patients were confirmed as being CYP1A2 ultrarapid metabolizers by the caffeine phenotyping test (median systemic caffeine plasma clearance; range, 3.85; 3.33 to 4.17 mL/min/kg) when compared with previous studies (0.3 to 3.33 mL/min/kg). The sequencing of the entire CYP1A2 gene from genomic DNA of these patients suggests that the -164C > A mutation (CYP1A2*1F) in intron 1, which confers a high inducibility of CYP1A2 in smokers, is the most likely explanation for their ultrarapid CYP1A2 activity. A marked (2 patients) or a moderate (2 patients) improvement of the clinical state of the patients occurred after the increase of CLO blood levels above the therapeutic threshold by the increase of CLO doses to very high values (ie, up to 1400 mg/d) or by the introduction of fluvoxamine, a potent CYP1A2 inhibitor, at low dosage (50 to 100 mg/d). Due to the high frequency of smokers among patients with schizophrenia and to the high frequency of the -164C > A polymorphism, CYP1A2 genotyping could have important clinical implications for the treatment of patients with CLO.
Resumo:
Alloreactive T cells are thought to be a potentially rich source of high-avidity T cells with therapeutic potential since tolerance to self-Ags is restricted to self-MHC recognition. Given the particularly high frequency of alloreactive T cells in the peripheral immune system, we used numerous MHC class I multimers to directly visualize and isolate viral and tumor Ag-specific alloreactive CD8 T cells. In fact, all but one specificities screened were undetectable in ex vivo labeling. In this study, we report the occurrence of CD8 T cells specifically labeled with allo-HLA-A*0201/Melan-A/MART-1(26-35) multimers at frequencies that are in the range of 10(-4) CD8 T cells and are thus detectable ex vivo by flow cytometry. We report the thymic generation and shaping of tumor Ag-specific, alloreactive T cells as well as their fate once seeded in the periphery. We show that these cells resemble their counterparts in HLA-A*0201-positive individuals, based on their structural and functional attributes.
Resumo:
The sense of touch relies on detection of mechanical stimuli by specialized mechanosensory neurons. The scarcity of molecular data has made it difficult to analyze development of mechanoreceptors and to define the basis of their diversity and function. We show that the transcription factor c-Maf/c-MAF is crucial for mechanosensory function in mice and humans. The development and function of several rapidly adapting mechanoreceptor types are disrupted in c-Maf mutant mice. In particular, Pacinian corpuscles, a type of mechanoreceptor specialized to detect high-frequency vibrations, are severely atrophied. In line with this, sensitivity to high-frequency vibration is reduced in humans carrying a dominant mutation in the c-MAF gene. Thus, our work identifies a key transcription factor specifying development and function of mechanoreceptors and their end organs.
Resumo:
Parkinsonian tremor is among the most emblematic medical signs and is one of the cardinal manifestations of Parkinson's disease (PD). Its semiology has been extensively addressed by ancient and contemporary medical literature, but more attention has been dedicated to its medical treatment in the past than nowadays. Among the hundreds of studies performed to determine the value of medical and surgical approaches on motor and non motor signs of PD, only a minority specifically considered effect on tremor as an efficacy outcome. Current available guidelines for PD treatment include attempts to specifically address tremor treatment but stress the low level of evidences available. In these conditions, with its still poorly understood pathophysiological basis and variable clinical expression PD tremor treatment is a clinical challenge. Only surgery (lesion or high frequency stimulation) of discrete deep brain targets consistently provides symptomatic long lasting alleviation. Through revision of contemporary scientific evidence, the purpose of this paper is to offer a systematic pragmatic approach to symptomatic management of tremor as one of the distinctive signs of PD that may generate substantial disability.
Resumo:
Refractory status epilepticus (RSE)-that is, seizures resistant to at least two antiepileptic drugs (AEDs)-is generally managed with barbiturates, propofol, or midazolam, despite a low level of evidence (Rossetti, 2007). When this approach fails, the need for alternative pharmacologic and nonpharmacologic strategies emerges. These have been investigated even less systematically than the aforementioned compounds, and are often used, sometimes in succession, in cases of extreme refractoriness (Robakis & Hirsch, 2006). Several possibilities are reviewed here. In view of the marked heterogeneity of reported information, etiologies, ages, and comedications, it is extremely difficult to evaluate a given method, not to say to compare different strategies among them. Pharmacologic Approaches Isoflurane and desflurane may complete the armamentarium of anesthetics,' and should be employed in a ''close'' environment, in order to prevent intoxication of treating personnel. c-Aminobutyric acid (GABA)A receptor potentiation represents the putative mechanism of action. In an earlier report, isoflurane was used for up to 55 h in nine patients, controlling seizures in all; mortality was, however, 67% (Kofke et al., 1989). More recently, the use of these inhalational anesthetics was described in seven subjects with RSE, for up to 26 days, with an endtidal concentration of 1.2-5%. All patients required vasopressors, and paralytic ileus occurred in three; outcome was fatal in three patients (43%) (Mirsattari et al., 2004). Ketamine, known as an emergency anesthetic because of its favorable hemodynamic profile, is an N-methyl-daspartate (NMDA) antagonist; the interest for its use in RSE derives from animal works showing loss of GABAA efficacy and maintained NMDA sensitivity in prolonged status epilepticus (Mazarati & Wasterlain, 1999). However, to avoid possible neurotoxicity, it appears safer to combine ketamine with GABAergic compounds (Jevtovic-Todorovic et al., 2001; Ubogu et al., 2003), also because of a likely synergistic effect (Martin & Kapur, 2008). There are few reported cases in humans, describing progressive dosages up to 7.5 mg/kg/h for several days (Sheth & Gidal, 1998; Quigg et al., 2002; Pruss & Holtkamp, 2008), with moderate outcomes. Paraldehyde acts through a yet-unidentified mechanism, and appears to be relatively safe in terms of cardiovascular tolerability (Ramsay, 1989; Thulasimani & Ramaswamy, 2002), but because of the risk of crystal formation and its reactivity with plastic, it should be used only as fresh prepared solution in glass devices (Beyenburg et al., 2000). There are virtually no recent reports regarding its use in adults RSE, whereas rectal paraldehyde in children with status epilepticus resistant to benzodiazepines seems less efficacious than intravenous phenytoin (Chin et al., 2008). Etomidate is another anesthetic agent for which the exact mechanism of action is also unknown, which is also relatively favorable regarding cardiovascular side effects, and may be used for rapid sedation. Its use in RSE was reported in eight subjects (Yeoman et al., 1989). After a bolus of 0.3 mg/kg, a drip of up to 7.2 mg/kg/h for up to 12 days was administered, with hypotension occurring in five patients; two patients died. A reversible inhibition of cortisol synthesis represents an important concern, limiting its widespread use and implying a careful hormonal substitution during treatment (Beyenburg et al., 2000). Several nonsedating approaches have been reported. The use of lidocaine in RSE, a class Ib antiarrhythmic agent modulating sodium channels, was reviewed in 1997 (Walker & Slovis, 1997). Initial boluses up to 5 mg/kg and perfusions of up to 6 mg/kg/h have been mentioned; somewhat surprisingly, at times lidocaine seemed to be successful in controlling seizures in patients who were refractory to phenytoin. The aforementioned dosages should not be overshot, in order to keep lidocaine levels under 5 mg/L and avoid seizure induction (Hamano et al., 2006). A recent pediatric retrospective survey on 57 RSE episodes (37 patients) described a response in 36%, and no major adverse events; mortality was not given (Hamano et al., 2006 Verapamil, a calcium-channel blocker, also inhibits P-glycoprotein, a multidrug transporter that may diminish AED availability in the brain (Potschka et al., 2002). Few case reports on its use in humans are available; this medication nevertheless appears relatively safe (under cardiac monitoring) up to dosages of 360 mg/day (Iannetti et al., 2005). Magnesium, a widely used agent for seizures elicited by eclampsia, has also been anecdotally reported in RSE (Fisher et al., 1988; Robakis & Hirsch, 2006), but with scarce results even at serum levels of 14 mm. The rationale may be found in the physiologic blockage of NMDA channels by magnesium ions (Hope & Blumenfeld, 2005). Ketogenic diet has been prescribed for decades, mostly in children, to control refractory seizures. Its use in RSE as ''ultima ratio'' has been occasionally described: three of six children (Francois et al., 2003) and one adult (Bodenant et al., 2008) were responders. This approach displays its effect subacutely over several days to a few weeks. Because ''malignant RSE'' seems at times to be the consequence of immunologic processes (Holtkamp et al., 2005), a course of immunomodulatory treatment is often advocated in this setting, even in the absence of definite autoimmune etiologies (Robakis & Hirsch, 2006); steroids, adrenocorticotropic hormone (ACTH), plasma exchanges, or intravenous immunoglobulins may be used alone or in sequential combination. Nonpharmacologic Approaches These strategies are described somewhat less frequently than pharmacologic approaches. Acute implantation of vagus nerve stimulation (VNS) has been reported in RSE (Winston et al., 2001; Patwardhan et al., 2005; De Herdt et al., 2009). Stimulation was usually initiated in the operation room, and intensity progressively adapted over a few days up to 1.25 mA (with various regimens regarding the other parameters), allowing a subacute seizure control; one transitory episode of bradycardia/asystole has been described (De Herdt et al., 2009). Of course, pending identification of a definite seizure focus, resective surgery may also be considered in selected cases (Lhatoo & Alexopoulos, 2007). Low-frequency (0.5 Hz) transcranial magnetic stimulation (TMS) at 90% of the resting motor threshold has been reported to be successful for about 2 months in a patient with epilepsia partialis continua, but with a weaning effect afterward, implying the need for a repetitive use (Misawa et al., 2005). More recently, TMS was applied in a combination of a short ''priming'' high frequency (up to 100 Hz) and longer runs of low-frequency stimulations (1 Hz) at 90-100% of the motor threshold in seven other patients with simple-partial status, with mixed results (Rotenberg et al., 2009). Paradoxically at first glance, electroconvulsive treatment may be found in cases of extremely resistant RSE. A recent case report illustrates its use in an adult patient with convulsive status, with three sessions (three convulsions each) carried out over 3 days, resulting in a moderate recovery; the mechanism is believed to be related to modification of the synaptic release of neurotransmitters (Cline & Roos, 2007). Therapeutic hypothermia, which is increasingly used in postanoxic patients (Oddo et al., 2008), has been the object of a recent case series in RSE (Corry et al., 2008). Reduction of energy demand, excitatory neurotransmission, and neuroprotective effects may account for the putative mechanism of action. Four adult patients in RSE were cooled to 31_-34_C with an endovascular system for up to 90 h, and then passively rewarmed over 2-50 h. Seizures were controlled in two patients, one of whom died; also one of the other two patients in whom seizures continued subsequently deceased. Possible side effects are related to acid-base and electrolyte disturbances, and coagulation dysfunction including thrombosis, infectious risks, cardiac arrhythmia, and paralytic ileus (Corry et al., 2008; Cereda et al., 2009). Finally, anecdotic evidence suggests that cerebrospinal fluid (CSF)-air exchange may induce some transitory benefit in RSE (Kohrmann et al., 2006); although this approach was already in use in the middle of the twentieth century, the mechanism is unknown. Acknowledgment A wide spectrum of pharmacologic (sedating and nonsedating) and nonpharmacologic (surgical, or involving electrical stimulation) regimens might be applied to attempt RSE control. Their use should be considered only after refractoriness to AED or anesthetics displaying a higher level of evidence. Although it seems unlikely that these uncommon and scarcely studied strategies will influence the RSE outcome in a decisive way, some may be interesting in particular settings. However, because the main prognostic determinant in status epilepticus appears to be related to the underlying etiology rather than to the treatment approach (Rossetti et al., 2005, 2008), the safety issue should always represent a paramount concern for the prescribing physician. Conclusion The author confirms that he has read the Journal's position on issues involved in ethical publication and affirms that this paper is consistent with those guidelines.